Multi-Strategy Improved Red-Tailed Hawk Algorithm for Real-Environment Unmanned Aerial Vehicle Path Planning
Abstract
:1. Introduction
- A stochastic reverse learning strategy based on Bernoulli mapping is utilized to enhance the quality of the population, allowing the algorithm to explore more promising spaces.
- The dynamic position update optimization strategy using stochastic mean fusion makes the algorithm less likely to fall into a local optimal solution during exploration and increases the probability that the algorithm will find a globally optimal solution.
- The convergence speed of the algorithm is improved using a trust domain-based optimization method for frontier position updating, which employs a dynamic trust domain radius to provide a trade-off between convergence speed and accuracy, achieving better performance.
- The algorithms were qualitatively analyzed using 29 test functions from the IEEE CEC2017 test set and compared with 11 other algorithms to obtain competitive results. Most importantly, the algorithms were statistically analyzed to fully analyze the superior performance of IRTH.
- The IRTH algorithm is applied to the UAV path-planning problem in a real environment and compared with other comparative algorithms.
2. Red-Tailed Hawk (RTH) Algorithm
2.1. High-Soaring Stage
2.2. Low-Soaring Stage
2.3. Stooping and Swooping Stage
Algorithm 1. The pseudo-code of the RTH. |
1: Begin 2: Initialize: the relevant parameters. 3: Initialization: random generation within the search space. 4: While do 5: High-soaring stage: 6: Update the population by Equation (1) 7: Low-soaring stage: 8: Update the population by Equation (5) 9: Stooping and Swooping stage: 10: Update the population by Equation (8) 11: 12: End while 13: return best solution 14: end |
3. Proposed IRTH
3.1. A Stochastic Reverse Learning Strategy Based on Bernoulli Mapping
3.2. Dynamic Position Update Optimization Strategy for Stochastic Mean Fusion
3.3. Optimization Method for Frontier Position Update Based on Trust Domain
Algorithm 2. The pseudo-code of the IRTH. |
1: Begin 2: Initialize: the relevant parameters. 3: Initialization: random generation within the search space. 4: While do 5: High-soaring stage: 6: Update the population by Equation (1) 6: Dynamic position update optimization strategy for stochastic mean fusion 6: Update the population by Equation (16) 6: Optimization Method for Frontier Position Update Based on Trust Domain 8: Update the population by Equation (20) 13: 14: End while 15: return best solution 16: end |
3.4. Computational Time Complexity
4. Experimental Results and Detailed Analyses
4.1. Benchmark Test Functions
4.2. Competitor Algorithms and Parameter Settings
4.3. Qualitative Analysis of IRTH
4.3.1. Analysis of the Population Diversity
4.3.2. Analysis of the Exploration and Exploitation
4.3.3. Impact Analysis of the Modification
4.4. Comparison Using CEC 2017 Test Functions
4.5. Statistical Analysis
4.5.1. Wilcoxon Rank Sum Test
4.5.2. Friedman Mean Rank Test
4.6. Sensitivity Analysis of Parameters
5. IRTH Algorithm for Real-Environment UAV Path Planning
5.1. Scenarios and Objective Functions
5.1.1. Scenario Setting
5.1.2. Optimization Problem Definition
- Path Length Costs
- 2.
- Threat Costs
- 3.
- High Costs
- 4.
- Smoothness Costs
- 5.
- Overall Objective Function (OEF)
- 6.
- Problem Formulation
5.1.3. Analysis of Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yaacoub, J.; Noura, H.; Salman, O.; Chehab, A. Security Analysis of Drones Systems: Attacks, Limitations, and Recommendations. Internet Things 2020, 11, 100218. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Yang, H.; Yu, K.; Shu, J. Crack Detection and Quantification for Concrete Structures Using UAV and Transformer. Autom. Constr. 2023, 152, 104929. [Google Scholar] [CrossRef]
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A Compilation of UAV Applications for Precision Agriculture. Comput. Netw. 2020, 172, 107148. [Google Scholar] [CrossRef]
- Tang, P.; Li, J.; Sun, H. A Review of Electric UAV Visual Detection and Navigation Technologies for Emergency Rescue Missions. Sustainability 2024, 16, 2105. [Google Scholar] [CrossRef]
- Vacca, G.; Vecchi, E. UAV Photogrammetric Surveys for Tree Height Estimation. Drones 2024, 8, 106. [Google Scholar] [CrossRef]
- Wu, X.; Li, W.; Hong, D.; Tao, R.; Du, Q. Deep Learning for Unmanned Aerial Vehicle-Based Object Detection and Tracking: A Survey. Ieee Geosci. Remote Sens. Mag. 2022, 10, 91–124. [Google Scholar] [CrossRef]
- Liu, X.; Li, G.; Yang, H.; Zhang, N.; Wang, L.; Shao, P. Agricultural UAV Trajectory Planning by Incorporating Multi-Mechanism Improved Grey Wolf Optimization Algorithm. Expert Syst. Appl. 2023, 233, 120946. [Google Scholar] [CrossRef]
- Xu, Q.; Su, Z.; Fang, D.; Wu, Y. BASIC: Distributed Task Assignment With Auction Incentive in UAV-Enabled Crowdsensing System. IEEE Trans. Veh. Technol. 2024, 73, 2416–2430. [Google Scholar] [CrossRef]
- Bai, Z.; Zhou, H.; Shi, J.; Xing, L.; Wang, J. A Hybrid Multi-Objective Evolutionary Algorithm with High Solving Efficiency for UAV Defense Programming. Swarm Evol. Comput. 2024, 87, 101572. [Google Scholar] [CrossRef]
- Murota, K.; Shioura, A. Dijkstra’s Algorithm and L-Concave Function Maximization. Math. Program. 2014, 145, 163–177. [Google Scholar] [CrossRef]
- Saian, P.O.N.; Suyoto; Pranowo. Optimized A-Star Algorithm in Hexagon-Based Environment Using Parallel Bidirectional Search. In Proceedings of the 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia, 5–6 October 2016. [Google Scholar]
- Pesic, D.; Selmic, M.; Macura, D.; Rosic, M. Finding Optimal Route by Two-Criterion Fuzzy Floyd’s Algorithm-Case Study Serbia. Oper. Res. 2020, 20, 119–138. [Google Scholar] [CrossRef]
- de las Casas, P.; Kraus, L.; Sedeño-Noda, A.; Borndörfer, R. Targeted Multiobjective Dijkstra Algorithm. Networks 2023, 82, 277–298. [Google Scholar] [CrossRef]
- Laskaris, R. Artificial Intelligence: A Modern Approach, 3rd Edition. Libr. J. 2015, 140, 45. [Google Scholar]
- Ji, J.; Wu, T.; Yang, C. Neural Population Dynamics Optimization Algorithm: A Novel Brain-Inspired Meta-Heuristic Method. Knowl.-Based Syst. 2024, 300, 112194. [Google Scholar] [CrossRef]
- Truong, D.-N.; Chou, J.-S. Metaheuristic Algorithm Inspired by Enterprise Development for Global Optimization and Structural Engineering Problems with Frequency Constraints. Eng. Struct. 2024, 318, 118679. [Google Scholar] [CrossRef]
- Yuan, C.; Zhao, D.; Heidari, A.A.; Liu, L.; Chen, Y.; Chen, H. Polar Lights Optimizer: Algorithm and Applications in Image Segmentation and Feature Selection. Neurocomputing 2024, 607, 128427. [Google Scholar] [CrossRef]
- Alhijawi, B.; Awajan, A. Genetic Algorithms: Theory, Genetic Operators, Solutions, and Applications. Evol. Intell. 2024, 17, 1245–1256. [Google Scholar] [CrossRef]
- Gad, A.G. Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review. Arch Comput. Methods Eng 2022, 29, 2531–2561. [Google Scholar] [CrossRef]
- López-Ibáñez, M.; Stützle, T.; Dorigo, M. Ant Colony Optimization: A Component-Wise Overview. In Handbook of Heuristics; Martí, R., Pardalos, P.M., Resende, M.G.C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 371–407. ISBN 978-3-319-07124-4. [Google Scholar]
- Hashim, F.; Hussain, K.; Houssein, E.; Mabrouk, M.; Al-Atabany, W. Archimedes Optimization Algorithm: A New Metaheuristic Algorithm for Solving Optimization Problems. Appl. Intell. 2021, 51, 1531–1551. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, Q. Alpha Evolution: An Efficient Evolutionary Algorithm with Evolution Path Adaptation and Matrix Generation. Eng. Appl. Artif. Intell. 2024, 137, 109202. [Google Scholar] [CrossRef]
- Luan, T.M.; Khatir, S.; Tran, M.T.; De Baets, B.; Cuong-Le, T. Exponential-Trigonometric Optimization Algorithm for Solving Complicated Engineering Problems. Comput. Methods Appl. Mech. Eng. 2024, 432, 117411. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, H.; Heidari, A.A.; Gandomi, A.H. Hunger Games Search: Visions, Conception, Implementation, Deep Analysis, Perspectives, and towards Performance Shifts. Expert Syst. Appl. 2021, 177, 114864. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Heidari, A.A.; Noshadian, S.; Chen, H.; Gandomi, A.H. INFO: An Efficient Optimization Algorithm Based on Weighted Mean of Vectors. Expert Syst. Appl. 2022, 195, 116516. [Google Scholar] [CrossRef]
- Lian, J.; Hui, G.; Ma, L.; Zhu, T.; Wu, X.; Heidari, A.A.; Chen, Y.; Chen, H. Parrot Optimizer: Algorithm and Applications to Medical Problems. Comput. Biol. Med. 2024, 172, 108064. [Google Scholar] [CrossRef]
- Wu, X.; Li, S.; Jiang, X.; Zhou, Y. Information Acquisition Optimizer: A New Efficient Algorithm for Solving Numerical and Constrained Engineering Optimization Problems. J. Supercomput. 2024, 80, 25736–25791. [Google Scholar] [CrossRef]
- Cheng, J.; De Waele, W. Weighted Average Algorithm: A Novel Meta-Heuristic Optimization Algorithm Based on the Weighted Average Position Concept. Knowl.-Based Syst. 2024, 305, 112564. [Google Scholar] [CrossRef]
- Fakhouri, H.N.; Awaysheh, F.M.; Alawadi, S.; Alkhalaileh, M.; Hamad, F. Four Vector Intelligent Metaheuristic for Data Optimization. Computing 2024, 106, 2321–2359. [Google Scholar] [CrossRef]
- Ghasemi, M.; Golalipour, K.; Zare, M.; Mirjalili, S.; Trojovský, P.; Abualigah, L.; Hemmati, R. Flood Algorithm (FLA): An Efficient Inspired Meta-Heuristic for Engineering Optimization. J. Supercomput. 2024, 80, 22913–23017. [Google Scholar] [CrossRef]
- Falahah, I.A.; Al-Baik, O.; Alomari, S.; Bektemyssova, G.; Gochhait, S.; Leonova, I.; Malik, O.P.; Werner, F.; Dehghani, M. Frilled Lizard Optimization: A Novel Bio-Inspired Optimizer for Solving Engineering Applications. Comput. Mater. Contin. 2024, 79, 3631–3678. [Google Scholar] [CrossRef]
- Wang, W.; Tian, W.; Xu, D.; Zang, H. Arctic Puffin Optimization: A Bio-Inspired Metaheuristic Algorithm for Solving Engineering Design Optimization. Adv. Eng. Softw. 2024, 195, 103694. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Mirjalili, S. Eel and Grouper Optimizer: A Nature-Inspired Optimization Algorithm. Clust. Comput. 2024, 27, 12745–12786. [Google Scholar] [CrossRef]
- Bouaouda, A.; Hashim, F.A.; Sayouti, Y.; Hussien, A.G. Pied Kingfisher Optimizer: A New Bio-Inspired Algorithm for Solving Numerical Optimization and Industrial Engineering Problems. Neural Comput. Appl. 2024, 36, 15455–15513. [Google Scholar] [CrossRef]
- Ferahtia, S.; Houari, A.; Rezk, H.; Djerioui, A.; Machmoum, M.; Motahhir, S.; Ait-Ahmed, M. Red-Tailed Hawk Algorithm for Numerical Optimization and Real-World Problems. Sci. Rep. 2023, 13, 12950. [Google Scholar] [CrossRef]
- Almousa, M.T.; Gomaa, M.R.; Ghasemi, M.; Louzazni, M. Single-Sensor Global MPPT for PV System Interconnected with DC Link Using Recent Red-Tailed Hawk Algorithm. Energies 2024, 17, 3391. [Google Scholar] [CrossRef]
- Qin, X.; Li, S.; Tong, J.; Xie, C.; Zhang, X.; Wu, F.; Xie, Q.; Ling, Y.; Lin, G. ERTH Scheduler: Enhanced Red-Tailed Hawk Algorithm for Multi-Cost Optimization in Cloud Task Scheduling. Artif. Intell. Rev. 2024, 57, 328. [Google Scholar] [CrossRef]
- Awad, N.H.; Ali, M.Z.; Liang, J.J.; Qu, B.Y.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Bound Constrained Real-Parameter Numerical Optimization; Technical Report; Nanyang Technological University: Singapore, 2016. [Google Scholar]
- Yuan, Y.; Gao, W.; Huang, L.; Li, H.; Xie, J. A Two-Phase Constraint-Handling Technique for Constrained Optimization. IEEE Trans. Syst. Man Cybern.-Syst. 2023, 53, 6194–6203. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Jameel, M.; Abouhawwash, M. Nutcracker Optimizer: A Novel Nature-Inspired Metaheuristic Algorithm for Global Optimization and Engineering Design Problems. Knowl.-Based Syst. 2023, 262, 110248. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Trojovská, E.; Trojovsky, P. Coati Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Knowl.-Based Syst. 2023, 259, 110011. [Google Scholar] [CrossRef]
- Braik, M. Chameleon Swarm Algorithm: A Bio-Inspired Optimizer for Solving Engineering Design Problems. Expert Syst. Appl. 2021, 174, 114685. [Google Scholar] [CrossRef]
- Abdollahzadeh, B.; Gharehchopogh, F.; Mirjalili, S. Artificial Gorilla Troops Optimizer: A New Nature-Inspired Metaheuristic Algorithm for Global Optimization Problems. Int. J. Intell. Syst. 2021, 36, 5887–5958. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, D.; Chen, J.; He, L. Secretary Bird Optimization Algorithm: A New Metaheuristic for Solving Global Optimization Problems. Artif. Intell. Rev. 2024, 57, 123. [Google Scholar] [CrossRef]
- Deng, L.; Liu, S. Snow Ablation Optimizer: A Novel Metaheuristic Technique for Numerical Optimization and Engineering Design. Expert Syst. Appl. 2023, 225, 120069. [Google Scholar] [CrossRef]
- Abdel-Salam, M.; Hu, G.; Celik, E.; Gharehchopogh, F.S.; El-Hasnony, I.M. Chaotic RIME Optimization Algorithm with Adaptive Mutualism for Feature Selection Problems. Comput. Biol. Med. 2024, 179, 108803. [Google Scholar] [CrossRef]
- Zolfi, K. Gold Rush Optimizer: A New Population-Based Metaheuristic Algorithm. Oper. Res. Decis. 2023, 33. [Google Scholar] [CrossRef]
- Fu, S.; Li, K.; Huang, H.; Ma, C.; Fan, Q.; Zhu, Y. Red-Billed Blue Magpie Optimizer: A Novel Metaheuristic Algorithm for 2D/3D UAV Path Planning and Engineering Design Problems. Artif. Intell. Rev. 2024, 57, 134. [Google Scholar] [CrossRef]
- Su, Y.; Dai, Y.; Liu, Y. A Hybrid Hyper-Heuristic Whale Optimization Algorithm for Reusable Launch Vehicle Reentry Trajectory Optimization. Aerosp. Sci. Technol. 2021, 119, 107200. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An Improved Grey Wolf Optimizer for Solving Engineering Problems. Expert Syst. Appl. 2021, 166, 113917. [Google Scholar] [CrossRef]
- Ito, H.; Ogden, R.; Langenhorst, T.; Inoue-Murayama, M. Contrasting Results From Molecular and Pedigree-Based Population Diversity Measures in Captive Zebra Highlight Challenges Facing Genetic Management of Zoo Populations. Zoo Biol. 2017, 36, 87–94. [Google Scholar] [CrossRef]
- Luo, C.; Kumar, S.; Mallick, D.; Luo, B. Impacts of Exploration and Exploitation on Firms Performance and the Moderating Effects of Slack: A Panel Data Analysis. IEEE Trans. Eng. Manag. 2019, 66, 613–620. [Google Scholar] [CrossRef]
- Rosner, B.; Glynn, R. Power and Sample Size Estimation for the Wilcoxon Rank Sum Test with Application to Comparisons of C Statistics from Alternative Prediction Models. Biometrics 2009, 65, 188–197. [Google Scholar] [CrossRef]
- Rayner, J.; Livingston, G. Relating the Friedman Test Adjusted for Ties, the Cochran-Mantel-Haenszel Mean Score Test and the ANOVA F Test. Commun. Stat.-Theory Methods 2023, 52, 4369–4378. [Google Scholar] [CrossRef]
Algorithm | Inspired | Classification | Reference |
---|---|---|---|
Alpha evolution (AE) | The alpha operator combines an adaptive base vector with step sizes that are both random and adaptive. | Evolutionary | [22] |
Exponential-Trigonometric Optimization (ETO) | An intricate blend of exponential and trigonometric functions. | Mathematical-based | [23] |
Hunger Games Search (HGS) | The hunger-induced actions and behavioral decisions of animals. | Swarm-based | [24] |
weIghted meaN oF vectOrs (INFO) | The weighted mean idea. | Mathematical-based | [25] |
Parrot Optimizer (PO) | Notable behaviors exhibited by trained Pyrrhura molinae parrots. | Swarm-based | [26] |
Polar Lights Optimization (PLO) | Based on the Northern Lights, this paper introduces Polar Lights Optimization (PLO) for solving optimization problems. | Physics-based | [17] |
Information acquisition optimizer (IAO) | Human information acquisition behaviors involve three key strategies. | Swarm-based | [27] |
Weighted average algorithm (WAA) | The weighted average position for the whole population. | Mathematical-based | [28] |
The Neural Population Dynamics Optimization Algorithm (NPDOA) | Brain neuroscience. | Swarm-based | [15] |
Four-Vector Intelligent Metaheuristic (FVIM) | Four top-performing leaders within a swarm. | Swarm-based | [29] |
Flood algorithm (FLA) | The complex dynamics and flow patterns of water masses during river basin floods. | Swarm-based | [30] |
Frilled Lizard Optimization (FLO) | The distinctive hunting strategies of frilled lizards in their native environment. | Swarm-based | [31] |
Arctic puffin optimization (APO) | The flight patterns and underwater foraging habits of Arctic puffins. | Swarm-based | [32] |
Eel and Grouper Optimizer (EGO) | The cooperative interaction and foraging tactics of eels and groupers in marine ecosystems. | Swarm-based | [33] |
Pied kingfisher optimizer (PKO) | The unique hunting strategies and symbiotic relationships exhibited by pied kingfishers in their natural environment. | Swarm-based | [34] |
Algorithms | Parameter Name | Parameter Value | Reference |
---|---|---|---|
CSA | 0.1,1.0,2.0,4.0 | [42] | |
GTO | 0.03,3,0.8 | [43] | |
SBOA | 1.5 | [44] | |
SAO | 1 | [45] | |
RIME | 5 | [46] | |
GRO | 2 | [47] | |
RBMO | 0.5 | [48] | |
ED | 1 | [16] | |
HHWOA | 3 | [49] | |
RTH | 15,0.5,1.5 | [50] |
ID | Metric | CSA | GTO | SBOA | SAO | RIME | GRO | RBMO | ED | HHWOA | IGWO | RTH | IRTH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | mean | 2.5268× 104 | 5.0944× 103 | 5.6114× 103 | 4.0570× 103 | 3.9372× 105 | 2.3385× 106 | 7.0808× 102 | 2.9724× 103 | 2.5445× 103 | 4.3980× 105 | 5.3680× 103 | 1.7175× 103 |
std | 3.1327× 104 | 5.8841× 103 | 5.9302× 103 | 4.0759× 103 | 2.2904× 105 | 5.2160× 106 | 7.8384× 102 | 2.4910× 103 | 3.5655× 103 | 2.7221× 105 | 5.0480× 103 | 1.7021× 103 | |
F3 | mean | 3.2621× 104 | 1.0753× 103 | 6.7930× 103 | 6.6223× 104 | 5.6882× 103 | 3.4128× 104 | 3.0090× 102 | 8.0829× 104 | 3.0000× 102 | 5.1794× 103 | 3.0000× 104 | 8.3308× 102 |
std | 8.4141× 103 | 9.5157× 102 | 4.1221× 103 | 1.7565× 104 | 3.3352× 103 | 8.4822× 103 | 7.8950× 10-1 | 1.5840× 104 | 1.4593× 10-2 | 3.3919× 103 | 2.0762× 10-9 | 2.6554× 104 | |
F4 | mean | 5.2383× 102 | 4.8913× 102 | 4.9312× 102 | 4.9602× 102 | 5.0150× 102 | 5.1239× 102 | 4.8577× 102 | 4.9204× 102 | 4.7482× 102 | 4.9921× 102 | 4.2103× 102 | 4.7185× 102 |
std | 3.4100× 101 | 2.6032× 101 | 2.4609× 101 | 1.6715× 101 | 2.0474× 101 | 1.7495× 101 | 1.4386× 101 | 2.2995× 101 | 3.2282× 101 | 1.3031× 101 | 2.9404× 101 | 2.1995× 101 | |
F5 | mean | 5.9570× 102 | 6.8035× 102 | 5.5860× 102 | 5.5188× 102 | 5.7958× 102 | 5.7873× 102 | 5.5124× 102 | 6.4815× 102 | 5.8568× 102 | 5.6833× 102 | 6.6768× 102 | 5.3147× 102 |
std | 1.6985× 101 | 3.8921× 101 | 1.2993× 101 | 1.3567× 101 | 1.9803× 101 | 1.8263× 101 | 1.4611× 101 | 1.9400× 101 | 2.0295× 101 | 4.8565× 101 | 3.4121× 101 | 6.1281× 100 | |
F6 | mean | 6.1964× 102 | 6.4306× 102 | 6.0034× 102 | 6.0002× 102 | 6.0449× 102 | 6.0393× 102 | 6.0009× 102 | 6.0343× 102 | 6.0522× 102 | 6.0047× 102 | 6.4057× 102 | 6.0000× 102 |
std | 4.4496× 100 | 8.2688× 100 | 5.2448× 10-1 | 5.5258× 10-2 | 2.5034× 100 | 1.4079× 100 | 2.3822× 10-1 | 3.5219× 100 | 3.6660× 100 | 2.8919× 10-1 | 7.4497× 100 | 1.8704× 10-3 | |
F7 | mean | 8.9373× 102 | 1.0750× 103 | 8.0717× 102 | 8.3401× 102 | 8.2481× 102 | 8.1598× 102 | 7.8010× 102 | 8.7468× 102 | 8.6456× 102 | 8.2044× 102 | 1.0637× 103 | 7.5878× 102 |
std | 3.3413× 101 | 7.7119× 101 | 3.2540× 101 | 6.8141× 101 | 2.1257× 101 | 3.3944× 101 | 1.2747× 101 | 1.7801× 101 | 3.8633× 101 | 5.6422× 101 | 6.8721× 101 | 4.7457× 100 | |
F8 | mean | 8.7336× 102 | 9.4986× 102 | 8.5854× 102 | 8.6081× 102 | 8.8801× 102 | 8.6351× 102 | 8.4982× 102 | 9.4873× 102 | 8.8213× 102 | 8.8031× 102 | 9.3960× 102 | 8.3472× 102 |
std | 1.1732× 101 | 2.7647× 101 | 1.7663× 101 | 1.5274× 101 | 2.1151× 101 | 1.4949× 101 | 1.4148× 101 | 1.4678× 101 | 2.0213× 101 | 5.5719× 101 | 2.6524× 101 | 8.2683× 100 | |
F9 | mean | 1.7543× 103 | 3.6873× 103 | 9.6105× 102 | 9.1016× 102 | 1.7802× 103 | 1.2072× 103 | 9.0813× 102 | 1.2338× 103 | 1.2185× 103 | 9.1110× 102 | 4.2867× 103 | 9.0145× 102 |
std | 3.5944× 102 | 8.5773× 102 | 9.0969× 101 | 2.8312× 101 | 1.1670× 103 | 3.1820× 102 | 7.0088× 100 | 2.4491× 102 | 2.4972× 102 | 2.2092× 101 | 6.8867× 102 | 8.2351× 10-1 | |
F10 | mean | 4.9250× 103 | 5.6615× 103 | 4.0576× 103 | 3.7100× 103 | 4.4685× 103 | 4.1210× 103 | 4.6323× 103 | 5.0919× 103 | 4.7873× 103 | 6.4184× 103 | 5.1349× 103 | 4.4389× 103 |
std | 6.9564× 102 | 1.0034× 103 | 6.5293× 102 | 5.8129× 102 | 5.4907× 102 | 5.9292× 102 | 6.2115× 102 | 3.1000× 102 | 7.0310× 102 | 2.2205× 103 | 6.6262× 102 | 5.1252× 102 | |
F11 | mean | 1.2986× 103 | 1.2297× 103 | 1.1767× 103 | 1.1661× 103 | 1.2948× 103 | 1.2046× 103 | 1.1664× 103 | 1.1865× 103 | 1.2019× 103 | 1.1795× 103 | 1.2611× 103 | 1.1477× 103 |
std | 5.3558× 101 | 4.7065× 101 | 3.7780× 101 | 4.1435× 101 | 6.0997× 101 | 3.6968× 101 | 3.1578× 101 | 3.9749× 101 | 4.9937× 101 | 2.7819× 101 | 6.0999× 101 | 2.3393× 101 | |
F12 | mean | 1.6852× 107 | 1.5626× 105 | 5.9525× 105 | 3.6164× 105 | 1.0177× 107 | 1.0509× 106 | 1.8974× 104 | 3.3351× 105 | 4.3021× 104 | 1.8439× 106 | 2.3416× 104 | 4.5370× 104 |
std | 1.8270× 107 | 1.2979× 105 | 5.1766× 105 | 3.2484× 105 | 5.5728× 106 | 7.9535× 105 | 1.6458× 104 | 2.9926× 105 | 2.3693× 104 | 1.5455× 106 | 1.4730× 104 | 1.7524× 104 | |
F13 | mean | 9.6833× 104 | 2.0404× 104 | 1.9129× 104 | 2.1458× 104 | 5.1582× 104 | 2.1763× 104 | 6.3328× 103 | 3.5871× 104 | 1.7913× 104 | 1.1293× 105 | 1.8770× 104 | 5.8237× 103 |
std | 4.7553× 104 | 2.3427× 104 | 1.9776× 104 | 1.9010× 104 | 4.3704× 104 | 1.5582× 104 | 1.3187× 104 | 2.1632× 104 | 1.8586× 104 | 6.5731× 104 | 2.1165× 104 | 5.1114× 103 | |
F14 | mean | 2.4833× 103 | 2.7080× 103 | 9.5137× 103 | 2.8358× 104 | 3.4860× 104 | 2.0049× 104 | 1.4566× 103 | 3.2602× 104 | 1.4693× 103 | 8.3857× 103 | 1.7526× 103 | 5.0657× 103 |
std | 1.6214× 103 | 1.9598× 103 | 9.1744× 103 | 2.5111× 104 | 3.0256× 104 | 2.0971× 104 | 1.0199× 101 | 2.1784× 104 | 3.0598× 101 | 6.5497× 103 | 1.5094× 102 | 2.6795× 103 | |
F15 | mean | 1.8524× 104 | 6.5373× 103 | 1.1582× 104 | 5.4142× 103 | 1.5255× 104 | 5.7455× 103 | 1.6705× 103 | 3.4160× 103 | 1.5549× 103 | 1.9376× 104 | 8.2909× 103 | 6.0515× 103 |
std | 8.4935× 103 | 8.7413× 103 | 1.1323× 104 | 4.7554× 103 | 1.1794× 104 | 4.6040× 103 | 7.0039× 101 | 3.2952× 103 | 6.8061× 101 | 1.2344× 104 | 9.7063× 103 | 4.3110× 103 | |
F16 | mean | 2.4702× 103 | 2.6175× 103 | 2.1408× 103 | 2.4225× 103 | 2.5512× 103 | 2.1658× 103 | 2.2663× 103 | 2.9281× 103 | 2.4505× 103 | 2.0412× 103 | 2.8202× 103 | 2.1409× 103 |
std | 2.5701× 102 | 3.1808× 102 | 3.5859× 102 | 3.1980× 102 | 2.8263× 102 | 2.5067× 102 | 2.8021× 102 | 1.3966× 102 | 2.8544× 102 | 3.1832× 102 | 2.7885× 102 | 1.7034× 102 | |
F17 | mean | 1.9548× 103 | 2.2642× 103 | 1.9024× 103 | 2.0244× 103 | 2.0566× 103 | 1.8389× 103 | 1.9563× 103 | 2.1257× 103 | 2.1134× 103 | 1.8447× 103 | 2.4736× 103 | 1.8893× 103 |
std | 1.0690× 102 | 2.1529× 102 | 7.1183× 101 | 1.9155× 102 | 1.6076× 102 | 6.1016× 101 | 1.1669× 102 | 1.1645× 102 | 1.9547× 102 | 9.9647× 101 | 3.0046× 102 | 7.2373× 101 | |
F18 | mean | 9.8052× 104 | 5.6765× 104 | 3.1710× 105 | 2.6613× 105 | 6.0203× 105 | 2.2997× 105 | 1.9150× 103 | 6.6305× 105 | 8.1518× 103 | 2.1405× 105 | 1.6974× 104 | 1.2874× 105 |
std | 9.5702× 104 | 3.8478× 104 | 2.2588× 105 | 1.5736× 105 | 3.8019× 105 | 2.0789× 105 | 3.2112× 101 | 3.3742× 105 | 9.7381× 103 | 1.8128× 105 | 1.5522× 104 | 5.0433× 104 | |
F19 | mean | 6.7405× 104 | 4.4112× 103 | 9.9577× 103 | 5.2815× 103 | 1.7592× 104 | 8.1353× 103 | 1.9403× 103 | 1.3944× 104 | 3.3769× 103 | 1.4321× 104 | 7.1436× 103 | 5.1198× 103 |
std | 6.6497× 104 | 2.4250× 103 | 1.1488× 104 | 3.7535× 103 | 1.7264× 104 | 8.6402× 103 | 1.6188× 101 | 1.1237× 104 | 5.3192× 103 | 1.6189× 104 | 6.1495× 103 | 2.3527× 103 | |
F20 | mean | 2.2755× 103 | 2.5010× 103 | 2.1971× 103 | 2.3430× 103 | 2.4048× 103 | 2.2679× 103 | 2.2467× 103 | 2.5133× 103 | 2.4621× 103 | 2.1777× 103 | 2.6998× 103 | 2.2105× 103 |
std | 1.0059× 102 | 1.6603× 102 | 8.6822× 101 | 1.6287× 102 | 1.5542× 102 | 8.7595× 101 | 1.1969× 102 | 1.3795× 102 | 2.1983× 102 | 1.1596× 102 | 1.9699× 102 | 7.9614× 101 | |
F21 | mean | 2.3783× 103 | 2.4479× 103 | 2.3507× 103 | 2.3556× 103 | 2.3966× 103 | 2.3550× 103 | 2.3532× 103 | 2.4475× 103 | 2.3845× 103 | 2.3528× 103 | 2.4619× 103 | 2.3355× 103 |
std | 2.1547× 101 | 4.2027× 101 | 1.1255× 101 | 1.1578× 101 | 2.4693× 101 | 2.7813× 101 | 1.2784× 101 | 1.7155× 101 | 2.3664× 101 | 3.3846× 101 | 3.8648× 101 | 9.0451× 100 | |
F22 | mean | 3.4928× 103 | 2.8468× 103 | 2.3006× 103 | 2.4571× 103 | 3.9296× 103 | 2.3102× 103 | 4.1847× 103 | 5.9670× 103 | 3.3583× 103 | 2.7294× 103 | 4.1830× 103 | 3.4742× 103 |
std | 2.0240× 103 | 1.6877× 103 | 1.3269× 100 | 5.9712× 102 | 1.8190× 103 | 5.3558× 100 | 1.8688× 103 | 1.4867× 103 | 1.8077× 103 | 1.6197× 103 | 2.3756× 103 | 1.5783× 103 | |
F23 | mean | 2.7519× 103 | 2.8423× 103 | 2.7009× 103 | 2.7045× 103 | 2.7520× 103 | 2.7135× 103 | 2.7220× 103 | 2.8080× 103 | 2.7652× 103 | 2.7198× 103 | 2.8491× 103 | 2.6869× 103 |
std | 2.9881× 101 | 7.8571× 101 | 1.6247× 101 | 1.7399× 101 | 2.3409× 101 | 2.2913× 101 | 1.9440× 101 | 1.9828× 101 | 3.3474× 101 | 4.8184× 101 | 6.3590× 101 | 8.4032× 100 | |
F24 | mean | 2.9001× 103 | 3.0052× 103 | 2.8690× 103 | 2.8790× 103 | 2.9156× 103 | 2.8842× 103 | 2.8926× 103 | 2.9805× 103 | 2.9322× 103 | 2.8639× 103 | 3.0385× 103 | 2.8593× 103 |
std | 2.6569× 101 | 6.6312× 101 | 1.7175× 101 | 1.1739× 101 | 2.6339× 101 | 1.7191× 101 | 2.3424× 101 | 2.7541× 101 | 3.6810× 101 | 3.5838× 101 | 7.6049× 101 | 8.9635× 100 | |
F25 | mean | 2.9481× 103 | 2.9021× 103 | 2.8961× 103 | 2.8873× 103 | 2.9035× 103 | 2.9160× 103 | 2.8873× 103 | 2.8931× 103 | 2.8971× 103 | 2.8875× 103 | 2.8930× 103 | 2.8868× 103 |
std | 2.6858× 101 | 1.9247× 101 | 1.8302× 101 | 2.1846× 100 | 2.0192× 101 | 2.1323× 101 | 1.4172× 100 | 1.2254× 101 | 1.5651× 101 | 1.3974× 100 | 1.4364× 101 | 1.3559× 100 | |
F26 | mean | 4.8285× 103 | 5.2719× 103 | 4.0407× 103 | 4.0335× 103 | 4.6365× 103 | 3.6706× 103 | 4.3195× 103 | 4.8802× 103 | 4.9149× 103 | 3.9018× 103 | 6.0434× 103 | 3.9691× 103 |
std | 5.4546× 102 | 1.6802× 103 | 4.7961× 102 | 4.4870× 102 | 3.9354× 102 | 6.4601× 102 | 5.1214× 102 | 7.9276× 102 | 3.7984× 102 | 4.9258× 102 | 9.7525× 102 | 2.4801× 102 | |
F27 | mean | 3.2644× 103 | 3.2740× 103 | 3.2074× 103 | 3.2200× 103 | 3.2315× 103 | 3.2342× 103 | 3.2242× 103 | 3.2466× 103 | 3.2517× 103 | 3.2011× 103 | 3.2656× 103 | 3.2143× 103 |
std | 2.5752× 101 | 3.9854× 101 | 9.8523× 100 | 1.0434× 101 | 1.3605× 101 | 1.2428× 101 | 1.4627× 101 | 1.5280× 101 | 2.8241× 101 | 9.5231× 100 | 3.2659× 101 | 7.4162× 100 | |
F28 | mean | 3.2989× 103 | 3.2286× 103 | 3.2185× 103 | 3.2136× 103 | 3.2661× 103 | 3.2650× 103 | 3.2191× 103 | 3.2167× 103 | 3.1430× 103 | 3.2221× 103 | 3.1347× 103 | 3.1904× 103 |
std | 2.0453× 101 | 3.1479× 101 | 2.8860× 101 | 2.7152× 101 | 5.7204× 101 | 2.5751× 101 | 2.5964× 101 | 1.7020× 101 | 5.3816× 101 | 1.3912× 101 | 5.9865× 101 | 3.9162× 101 | |
F29 | mean | 3.8367× 103 | 4.2136× 103 | 3.5175× 103 | 3.6672× 103 | 3.8575× 103 | 3.6413× 103 | 3.7100× 103 | 3.7783× 103 | 3.8091× 103 | 3.4687× 103 | 4.0371× 103 | 3.5198× 103 |
std | 2.4369× 102 | 3.4434× 102 | 1.0040× 102 | 2.2322× 102 | 2.2301× 102 | 1.0469× 102 | 1.1610× 102 | 1.1992× 102 | 1.8123× 102 | 8.5289× 101 | 2.6906× 102 | 7.9498× 101 | |
F30 | mean | 1.5774× 106 | 1.1793× 104 | 2.0090× 104 | 9.0335× 103 | 2.0499× 105 | 1.7182× 104 | 6.7753× 103 | 5.8706× 104 | 1.0583× 104 | 1.3207× 105 | 7.8287× 103 | 7.8607× 103 |
std | 1.5468× 106 | 4.9169× 103 | 3.7118× 104 | 3.2975× 103 | 2.1407× 105 | 9.8608× 103 | 1.3711× 103 | 1.5394× 105 | 3.7594× 103 | 6.4870× 104 | 2.0481× 103 | 1.5336× 103 |
ID | Metric | CSA | GTO | SBOA | SAO | RIME | GRO | RBMO | ED | HHWOA | IGWO | RTH | IRTH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | mean | 1.0061× 108 | 2.6932× 104 | 9.8143× 103 | 3.3774× 103 | 4.6685× 106 | 6.1917× 103 | 4.3025× 103 | 3.0661× 104 | 6.3579× 103 | 1.3296× 107 | 4.9340× 103 | 1.0207× 103 |
std | 6.6998× 107 | 4.0439× 104 | 7.8747× 103 | 4.0025× 103 | 1.5645× 106 | 6.6753× 108 | 6.4880× 103 | 3.7046× 104 | 8.1640× 103 | 6.8870× 106 | 7.2141× 103 | 7.7973× 102 | |
F3 | mean | 1.1318× 105 | 2.4888× 104 | 4.4634× 104 | 2.3680× 105 | 7.1933× 104 | 1.1173× 105 | 1.5347× 103 | 2.2685× 105 | 1.6399× 103 | 3.3718× 104 | 6.8803× 102 | 2.3112× 104 |
std | 1.9925× 104 | 9.0939× 103 | 1.0044× 104 | 4.9013× 104 | 1.6775× 104 | 1.4506× 104 | 6.6635× 102 | 3.0384× 104 | 1.7714× 103 | 7.1836× 103 | 5.3315× 102 | 4.2277× 103 | |
F4 | mean | 7.2450× 102 | 5.8271× 102 | 5.5534× 102 | 5.5250× 102 | 6.2373× 102 | 7.1388× 102 | 5.4743× 102 | 5.5223× 102 | 5.2842× 102 | 5.7996× 102 | 4.7900× 102 | 5.1686× 102 |
std | 5.6940× 101 | 5.6356× 101 | 5.2002× 101 | 5.3107× 101 | 6.5492× 101 | 9.4400× 101 | 5.1874× 101 | 6.8848× 101 | 6.0806× 101 | 4.4654× 101 | 4.7455× 101 | 4.3572× 101 | |
F5 | mean | 7.2730× 102 | 8.3009× 102 | 6.6839× 102 | 6.3834× 102 | 6.8296× 102 | 7.0489× 102 | 6.1652× 102 | 8.4007× 102 | 6.9747× 102 | 6.5099× 102 | 8.1089× 102 | 5.7340× 102 |
std | 3.5773× 101 | 4.2449× 101 | 3.6159× 101 | 6.7996× 101 | 4.5728× 101 | 3.0326× 101 | 2.3098× 101 | 3.2277× 101 | 4.2042× 101 | 7.0291× 101 | 3.7451× 101 | 1.0156× 101 | |
F6 | mean | 6.3634× 102 | 6.5634× 102 | 6.0475× 102 | 6.0045× 102 | 6.1398× 102 | 6.1532× 102 | 6.0074× 102 | 6.2338× 102 | 6.1949× 102 | 6.0235× 102 | 6.5042× 102 | 6.0017× 102 |
std | 5.1760× 100 | 8.0573× 100 | 2.3656× 100 | 3.7724× 10-1 | 5.3362× 100 | 4.3506× 100 | 4.3140× 10-1 | 5.5694× 100 | 7.8254× 100 | 1.0683× 100 | 6.5773× 100 | 5.8131× 10-2 | |
F7 | mean | 1.2148× 103 | 1.4666× 103 | 9.9864× 102 | 1.1730× 103 | 9.9296× 102 | 1.0137× 103 | 8.8313× 102 | 1.1366× 103 | 1.1452× 103 | 9.7105× 102 | 1.4861× 103 | 8.3252× 102 |
std | 7.4495× 101 | 1.2384× 102 | 7.9150× 101 | 5.6625× 101 | 6.6777× 101 | 6.6363× 101 | 2.6777× 101 | 3.3048× 101 | 9.3219× 101 | 9.8242× 101 | 1.1143× 102 | 1.9228× 101 | |
F8 | mean | 9.9059× 102 | 1.1498× 103 | 9.6129× 102 | 9.3514× 102 | 9.9077× 102 | 1.0042× 103 | 9.2585× 102 | 1.1285× 103 | 1.0010× 103 | 9.3885× 102 | 1.1299× 103 | 8.6822× 102 |
std | 3.1994× 101 | 4.1361× 101 | 3.5935× 101 | 6.4712× 101 | 3.9415× 101 | 4.1073× 101 | 2.8497× 101 | 2.9867× 101 | 4.5153× 101 | 4.7389× 101 | 4.6002× 101 | 1.2269× 101 | |
F9 | mean | 5.5287× 103 | 1.1214× 103 | 2.3187× 103 | 9.6698× 103 | 5.3978× 103 | 3.8155× 103 | 1.0987× 103 | 9.8008× 103 | 3.0773× 103 | 1.4590× 103 | 1.1068× 103 | 9.5177× 103 |
std | 1.4208× 103 | 1.6148× 103 | 6.6211× 102 | 1.0880× 102 | 2.3403× 103 | 1.5112× 103 | 2.3884× 102 | 4.1579× 103 | 9.2371× 102 | 6.6414× 102 | 1.3211× 103 | 3.4327× 101 | |
F10 | mean | 8.4274× 103 | 9.3183× 103 | 6.5729× 103 | 7.0743× 103 | 7.2573× 103 | 7.5917× 103 | 8.0732× 103 | 8.8150× 103 | 7.7771× 103 | 1.2411× 104 | 8.0583× 103 | 7.3729× 103 |
std | 1.5206× 103 | 1.9628× 103 | 7.7841× 102 | 2.1516× 103 | 9.1081× 102 | 6.7791× 102 | 8.7808× 102 | 4.7207× 102 | 8.3962× 102 | 3.3366× 103 | 1.0747× 103 | 6.9001× 102 | |
F11 | mean | 2.2089× 103 | 1.3014× 103 | 1.2605× 103 | 1.4837× 103 | 1.5163× 103 | 2.0220× 103 | 1.2534× 103 | 1.6398× 103 | 1.3536× 103 | 1.4213× 103 | 1.3374× 103 | 1.2134× 103 |
std | 3.3316× 102 | 3.7047× 101 | 4.8919× 101 | 2.4635× 102 | 7.3619× 101 | 5.0661× 102 | 4.1089× 101 | 1.5333× 102 | 6.4632× 101 | 7.1821× 101 | 8.7637× 101 | 2.4017× 101 | |
F12 | mean | 1.9042× 108 | 4.3600× 106 | 3.4325× 106 | 4.0049× 106 | 8.1233× 107 | 1.2137× 107 | 5.3393× 105 | 3.5426× 106 | 8.7679× 105 | 2.3543× 107 | 2.1962× 105 | 1.1081× 106 |
std | 1.1068× 108 | 3.8771× 106 | 2.5735× 106 | 2.4617× 106 | 5.3087× 107 | 6.0742× 106 | 4.0476× 105 | 3.0959× 106 | 4.8006× 105 | 1.4855× 107 | 1.2838× 105 | 4.4008× 105 | |
F13 | mean | 1.1326× 105 | 1.5210× 103 | 1.2579× 103 | 7.4823× 103 | 2.0486× 105 | 8.2442× 103 | 1.4485× 103 | 9.4118× 103 | 8.7782× 103 | 3.8757× 105 | 8.6025× 103 | 8.3578× 103 |
std | 8.6611× 104 | 1.1100× 104 | 1.1711× 104 | 7.6736× 103 | 8.8566× 104 | 3.5245× 103 | 1.2197× 104 | 7.6332× 103 | 8.0889× 103 | 1.6366× 105 | 8.6463× 103 | 6.2844× 103 | |
F14 | mean | 1.0699× 105 | 2.9181× 104 | 1.4552× 105 | 7.6592× 104 | 2.3580× 105 | 1.9410× 105 | 1.5742× 103 | 3.9817× 105 | 8.3630× 103 | 5.9020× 104 | 6.2833× 103 | 5.3734× 104 |
std | 8.4716× 104 | 2.5792× 104 | 8.3258× 104 | 5.3496× 104 | 1.4515× 105 | 1.3863× 105 | 3.0708× 101 | 2.1319× 105 | 6.2333× 103 | 4.8849× 104 | 3.5226× 103 | 2.3916× 104 | |
F15 | mean | 5.0313× 104 | 1.6094× 104 | 1.1361× 104 | 1.2034× 104 | 6.0197× 104 | 1.0276× 104 | 9.1573× 103 | 1.3718× 104 | 1.2448× 104 | 9.8461× 104 | 9.6313× 103 | 5.2293× 103 |
std | 2.8826× 104 | 8.6353× 103 | 7.2988× 103 | 6.1921× 103 | 3.7033× 104 | 5.8115× 103 | 1.0277× 104 | 1.0212× 104 | 9.0788× 103 | 4.6299× 104 | 8.0729× 103 | 3.0271× 103 | |
F16 | mean | 3.2291× 103 | 3.5500× 103 | 2.6084× 103 | 3.1167× 103 | 3.5700× 103 | 2.6998× 103 | 3.1046× 103 | 4.0171× 103 | 3.4757× 103 | 2.7538× 103 | 3.7384× 103 | 2.8895× 103 |
std | 4.6609× 102 | 4.3251× 102 | 3.7668× 102 | 4.3147× 102 | 3.4989× 102 | 2.7874× 102 | 3.4405× 102 | 3.0363× 102 | 4.6972× 102 | 7.1569× 102 | 4.3891× 102 | 3.4816× 102 | |
F17 | mean | 2.9195× 103 | 3.4006× 103 | 2.6491× 103 | 2.6760× 103 | 3.2685× 103 | 2.6841× 103 | 2.8503× 103 | 3.2643× 103 | 3.1381× 103 | 2.6349× 103 | 3.4887× 103 | 2.6727× 103 |
std | 2.7226× 102 | 3.2628× 102 | 2.5667× 102 | 3.1011× 102 | 3.7153× 102 | 2.2467× 102 | 2.8814× 102 | 3.1314× 102 | 3.1099× 102 | 5.9631× 102 | 4.0167× 102 | 2.2049× 102 | |
F18 | mean | 7.7975× 105 | 1.5975× 105 | 1.7484× 106 | 1.2684× 106 | 3.1366× 106 | 1.4659× 106 | 2.5464× 103 | 3.5409× 106 | 3.7819× 106 | 9.6780× 105 | 4.1765× 106 | 8.5722× 105 |
std | 5.8282× 105 | 9.5450× 104 | 9.3749× 105 | 1.6958× 106 | 2.1994× 106 | 7.4807× 105 | 2.9827× 102 | 2.3298× 106 | 3.4000× 104 | 7.4831× 105 | 2.9673× 104 | 3.5905× 105 | |
F19 | mean | 9.1656× 105 | 1.7667× 104 | 1.7495× 104 | 1.9516× 104 | 4.9398× 104 | 2.0995× 104 | 6.8977× 103 | 9.6275× 103 | 1.6169× 104 | 5.4529× 104 | 1.3777× 104 | 1.2172× 104 |
std | 7.8390× 105 | 1.0998× 104 | 1.3175× 104 | 1.0569× 104 | 3.2077× 104 | 1.0397× 104 | 1.1055× 104 | 1.0207× 104 | 1.1239× 104 | 2.7900× 104 | 1.0042× 104 | 8.2462× 103 | |
F20 | mean | 2.8859× 103 | 3.1936× 103 | 2.6903× 103 | 2.8369× 103 | 3.1126× 103 | 2.7344× 103 | 2.9847× 103 | 3.4999× 103 | 3.1199× 103 | 2.8880× 103 | 3.3303× 103 | 2.8381× 103 |
std | 3.3196× 102 | 3.2576× 102 | 2.8019× 102 | 3.1167× 102 | 2.6189× 102 | 1.9139× 102 | 2.1919× 102 | 1.3929× 102 | 3.0706× 102 | 5.0422× 102 | 2.8285× 102 | 1.9769× 102 | |
F21 | mean | 2.5010× 103 | 2.6350× 103 | 2.4226× 103 | 2.4262× 103 | 2.4864× 103 | 2.4658× 103 | 2.4300× 103 | 2.6484× 103 | 2.4952× 103 | 2.4187× 103 | 2.6376× 103 | 2.3748× 103 |
std | 2.6116× 101 | 6.0906× 101 | 2.5396× 101 | 2.1516× 101 | 4.2529× 101 | 3.0487× 101 | 3.1347× 101 | 3.1080× 101 | 4.1563× 101 | 2.4425× 101 | 6.0141× 101 | 1.6028× 101 | |
F22 | mean | 9.8196× 103 | 1.1038× 104 | 7.0325× 103 | 7.8648× 103 | 9.1403× 103 | 7.4484× 103 | 9.4121× 103 | 1.1086× 104 | 9.5720× 103 | 1.2659× 104 | 9.9843× 103 | 8.9756× 103 |
std | 1.9645× 103 | 1.2783× 103 | 2.5282× 103 | 2.4530× 103 | 1.0792× 103 | 3.1062× 103 | 1.7929× 103 | 4.5495× 102 | 1.1309× 103 | 4.0602× 103 | 8.3250× 102 | 5.7891× 102 | |
F23 | mean | 3.0373× 103 | 3.1887× 103 | 2.8625× 103 | 2.8521× 103 | 2.9503× 103 | 2.9276× 103 | 2.9452× 103 | 3.1068× 103 | 3.0225× 103 | 2.8881× 103 | 3.2158× 103 | 2.8315× 103 |
std | 5.9087× 101 | 8.9178× 101 | 3.6448× 101 | 2.9978× 101 | 4.7530× 101 | 3.0110× 101 | 6.3324× 101 | 3.7490× 101 | 5.3944× 101 | 9.7407× 101 | 1.1214× 102 | 1.8742× 101 | |
F24 | mean | 3.1596× 103 | 3.3775× 103 | 3.0159× 103 | 3.0341× 103 | 3.1170× 103 | 3.0896× 103 | 3.1221× 103 | 3.3132× 103 | 3.1757× 103 | 3.0293× 103 | 3.3767× 103 | 2.9901× 103 |
std | 6.5399× 101 | 1.1499× 102 | 3.2357× 101 | 8.2431× 101 | 5.1140× 101 | 3.2318× 101 | 6.2483× 101 | 6.2619× 101 | 6.8836× 101 | 9.0477× 101 | 1.1748× 102 | 1.3382× 101 | |
F25 | mean | 3.2827× 103 | 3.1116× 103 | 3.0896× 103 | 3.0399× 103 | 3.1040× 103 | 3.2833× 103 | 3.0701× 103 | 3.0838× 103 | 3.0522× 103 | 3.0886× 103 | 3.0560× 103 | 3.0398× 103 |
std | 7.6004× 101 | 2.4692× 101 | 2.3398× 101 | 2.8291× 101 | 4.3321× 101 | 7.6243× 101 | 2.6078× 101 | 3.3028× 101 | 3.7189× 101 | 3.1530× 101 | 4.1819× 101 | 2.9817× 101 | |
F26 | mean | 7.3727× 103 | 8.4232× 103 | 5.3702× 103 | 4.9564× 103 | 5.7954× 103 | 5.5915× 103 | 5.6434× 103 | 7.1172× 103 | 7.2445× 103 | 5.2327× 103 | 8.6120× 103 | 4.6721× 103 |
std | 9.2851× 102 | 3.1097× 103 | 1.5448× 103 | 2.0330× 102 | 6.7797× 102 | 1.2721× 103 | 5.1427× 102 | 3.3136× 102 | 9.8059× 102 | 7.5562× 102 | 2.6897× 103 | 1.7545× 102 | |
F27 | mean | 3.7627× 103 | 3.7985× 103 | 3.3206× 103 | 3.3398× 103 | 3.4973× 103 | 3.5686× 103 | 3.4251× 103 | 3.7948× 103 | 3.6474× 103 | 3.2972× 103 | 3.6495× 103 | 3.3554× 103 |
std | 1.6583× 102 | 1.8379× 102 | 4.0717× 101 | 6.4461× 101 | 7.4864× 101 | 7.5700× 101 | 1.2615× 102 | 1.2441× 102 | 1.4977× 102 | 4.0092× 101 | 1.3327× 102 | 6.0297× 101 | |
F28 | mean | 3.7798× 103 | 3.3638× 103 | 3.3493× 103 | 3.2945× 103 | 3.3612× 103 | 3.6432× 103 | 3.3358× 103 | 3.3841× 103 | 3.3132× 103 | 3.3481× 103 | 3.3020× 103 | 3.3046× 103 |
std | 1.3824× 102 | 4.9948× 101 | 3.5706× 101 | 2.4935× 101 | 3.1899× 101 | 1.0693× 102 | 2.8017× 101 | 3.0300× 101 | 2.4819× 101 | 3.9802× 101 | 3.8078× 101 | 1.2283× 101 | |
F29 | mean | 5.1170× 103 | 5.1110× 103 | 3.7409× 103 | 3.8490× 103 | 4.6146× 103 | 4.1729× 103 | 4.3188× 103 | 4.8887× 103 | 4.6566× 103 | 3.7495× 103 | 4.7027× 103 | 3.8929× 103 |
std | 4.5475× 102 | 6.6936× 102 | 2.2728× 102 | 3.2789× 102 | 4.1467× 102 | 2.3171× 102 | 2.9683× 102 | 4.4946× 102 | 3.7499× 102 | 1.5925× 102 | 4.2710× 102 | 2.1670× 102 | |
F30 | mean | 9.4168× 107 | 1.2771× 106 | 9.5028× 105 | 9.4314× 105 | 2.5384× 107 | 1.4581× 106 | 1.8047× 106 | 2.8306× 106 | 1.0559× 106 | 8.3887× 106 | 7.9462× 105 | 8.9353× 105 |
std | 2.8810× 107 | 4.3268× 105 | 1.7820× 105 | 1.6497× 105 | 1.1156× 107 | 3.1136× 105 | 1.0419× 106 | 1.0731× 106 | 3.5146× 105 | 2.3153× 106 | 1.4337× 105 | 1.1944× 105 |
ID | Metric | CSA | GTO | SBOA | SAO | RIME | GRO | RBMO | ED | HHWOA | IGWO | RTH | IRTH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | mean | 1.0796× 1010 | 1.2291× 108 | 1.9079× 108 | 1.4125× 108 | 9.2498× 107 | 2.8043× 1010 | 3.2114× 107 | 3.5563× 108 | 6.2511× 103 | 8.4984× 109 | 4.8468× 103 | 2.9204× 105 |
std | 2.3153× 109 | 1.1691× 108 | 2.8426× 108 | 9.5248× 107 | 2.0914× 107 | 8.3110× 109 | 1.7226× 107 | 2.4699× 108 | 7.5622× 103 | 3.6494× 109 | 5.8996× 103 | 2.4211× 105 | |
F3 | mean | 3.6575× 105 | 1.6701× 105 | 2.4996× 105 | 7.3205× 105 | 4.9513× 105 | 3.1793× 105 | 8.1763× 104 | 6.2053× 105 | 3.0502× 105 | 2.6815× 105 | 6.6119× 104 | 2.1178× 105 |
std | 3.6090× 104 | 2.0188× 104 | 2.4605× 104 | 1.5136× 105 | 6.4844× 104 | 2.2025× 104 | 1.4554× 104 | 8.1622× 104 | 4.4695× 104 | 3.4550× 104 | 1.7946× 104 | 1.6732× 104 | |
F4 | mean | 2.2867× 103 | 1.0400× 103 | 9.2686× 102 | 7.5589× 102 | 9.1987× 102 | 3.2238× 103 | 8.8382× 102 | 1.0617× 103 | 7.1074× 102 | 1.4502× 103 | 6.7215× 102 | 7.0039× 102 |
std | 3.6033× 102 | 1.6256× 102 | 8.1214× 101 | 6.4034× 101 | 9.7811× 101 | 5.4772× 102 | 6.2345× 101 | 9.8521× 101 | 4.3889× 101 | 3.0432× 102 | 4.3372× 101 | 4.9982× 101 | |
F5 | mean | 1.2132× 103 | 1.3331× 103 | 9.9814× 102 | 1.1473× 103 | 1.0565× 103 | 1.1903× 103 | 9.5088× 102 | 1.5208× 103 | 1.0952× 103 | 9.6144× 102 | 1.2924× 103 | 7.3373× 102 |
std | 5.9548× 101 | 5.2029× 101 | 8.8253× 101 | 2.1584× 102 | 9.2563× 101 | 6.0460× 101 | 8.1137× 101 | 7.7780× 101 | 9.1349× 101 | 1.0623× 102 | 6.8410× 101 | 3.2536× 101 | |
F6 | mean | 6.5615× 102 | 6.6147× 102 | 6.2481× 102 | 6.1112× 102 | 6.3541× 102 | 6.4021× 102 | 6.1012× 102 | 6.5117× 102 | 6.3956× 102 | 6.1177× 102 | 6.5239× 102 | 6.0383× 102 |
std | 3.4967× 100 | 3.6748× 100 | 7.3954× 100 | 2.2631× 100 | 5.2757× 100 | 5.2722× 100 | 2.7333× 100 | 2.5228× 100 | 5.4985× 100 | 2.3041× 100 | 3.4803× 100 | 7.0743× 10-1 | |
F7 | mean | 2.6702× 103 | 2.9435× 103 | 1.9067× 103 | 1.9674× 103 | 1.6975× 103 | 2.1054× 103 | 1.3340× 103 | 2.6006× 103 | 2.2952× 103 | 1.4707× 103 | 2.9192× 103 | 1.1375× 103 |
std | 1.9015× 102 | 1.8111× 102 | 1.8453× 102 | 6.8935× 101 | 1.6381× 102 | 1.8256× 102 | 1.1242× 102 | 1.9477× 102 | 2.1745× 102 | 1.3233× 102 | 1.6237× 102 | 3.6184× 101 | |
F8 | mean | 1.5488× 103 | 1.7576× 103 | 1.2899× 103 | 1.3881× 103 | 1.3501× 103 | 1.4761× 103 | 1.2193× 103 | 1.8030× 103 | 1.4177× 103 | 1.2549× 103 | 1.6695× 103 | 1.0453× 103 |
std | 7.6411× 101 | 8.0124× 101 | 7.3924× 101 | 2.5748× 102 | 8.7527× 101 | 7.5646× 101 | 7.5834× 101 | 7.1840× 101 | 8.3247× 101 | 1.1857× 102 | 8.4022× 101 | 2.7592× 101 | |
F9 | mean | 2.1637× 104 | 2.3710× 104 | 1.7973× 104 | 9.3598× 103 | 2.7913× 104 | 2.1153× 104 | 6.1673× 103 | 5.2880× 104 | 1.3210× 104 | 1.7740× 104 | 2.2005× 104 | 2.9671× 103 |
std | 2.8353× 103 | 1.4288× 103 | 3.5589× 103 | 4.7432× 103 | 1.1286× 104 | 3.7656× 103 | 2.3224× 103 | 7.9331× 103 | 3.3169× 103 | 8.3005× 103 | 1.5265× 103 | 5.4116× 102 | |
F10 | mean | 1.8640× 104 | 1.6711× 104 | 1.5033× 104 | 2.1979× 104 | 1.7178× 104 | 1.9026× 104 | 1.9198× 104 | 2.3004× 104 | 1.6596× 104 | 2.6118× 104 | 1.5900× 104 | 1.6966× 104 |
std | 1.6322× 103 | 2.9862× 103 | 1.5073× 103 | 7.9384× 103 | 1.4149× 103 | 1.5011× 103 | 1.7005× 103 | 7.1066× 102 | 1.4348× 103 | 7.4900× 103 | 1.4060× 103 | 1.3518× 103 | |
F11 | mean | 5.2436× 104 | 6.8503× 103 | 1.2879× 104 | 1.3678× 105 | 7.2701× 103 | 5.2460× 104 | 3.2691× 103 | 7.6291× 104 | 2.3262× 103 | 1.2675× 104 | 2.2341× 103 | 3.6329× 103 |
std | 1.2015× 104 | 2.0028× 103 | 4.5184× 103 | 3.5820× 103 | 1.1316× 103 | 9.9105× 103 | 3.3443× 102 | 1.2533× 103 | 2.3293× 102 | 4.4250× 103 | 2.4816× 102 | 5.5426× 102 | |
F12 | mean | 1.4599× 109 | 8.6200× 107 | 5.5383× 107 | 4.3425× 107 | 7.0047× 108 | 1.3882× 109 | 2.6548× 107 | 6.6270× 107 | 7.7935× 106 | 4.2442× 108 | 2.5147× 106 | 7.4138× 106 |
std | 4.2559× 108 | 7.5239× 107 | 3.4302× 107 | 2.2567× 107 | 2.7708× 108 | 8.8712× 108 | 1.7397× 107 | 2.8065× 107 | 4.0611E+06 | 1.7948× 108 | 1.2313× 106 | 2.9190× 106 | |
F13 | mean | 5.7871× 104 | 2.0412× 104 | 1.2586× 104 | 5.0653× 103 | 3.0502× 105 | 4.6621× 105 | 1.1527× 104 | 1.0654× 104 | 1.2346× 104 | 4.6021× 105 | 9.7754× 103 | 4.2581× 103 |
std | 2.1425× 104 | 8.0092× 103 | 7.6554× 103 | 2.5408× 103 | 9.2779× 104 | 5.0084× 105 | 1.3190× 104 | 6.8587× 103 | 4.6171× 103 | 2.5097× 105 | 6.2239× 103 | 1.8084× 103 | |
F14 | mean | 1.8320× 106 | 3.4519× 105 | 1.5068× 106 | 7.4591× 105 | 4.2998× 106 | 2.0630× 106 | 2.3440× 103 | 4.4042× 106 | 9.4906× 104 | 1.2201× 106 | 5.6723× 104 | 9.7278× 105 |
std | 1.1244× 106 | 1.4883× 105 | 8.1152× 105 | 3.8218× 105 | 2.3267× 106 | 6.6870× 105 | 4.3042× 102 | 2.3672× 106 | 3.6996× 104 | 6.5436× 105 | 2.8685× 104 | 3.5057× 105 | |
F15 | mean | 4.7306× 104 | 1.0331× 104 | 9.3792× 103 | 3.4138× 103 | 1.4111× 105 | 8.4546× 103 | 5.9420× 103 | 5.4500× 103 | 4.8994× 103 | 1.5791× 105 | 6.3513× 103 | 3.5015× 103 |
std | 2.2130× 104 | 6.7643× 103 | 1.9862× 104 | 1.8422× 103 | 5.0047× 104 | 3.1098× 103 | 2.8072× 103 | 4.1157× 103 | 2.7186× 103 | 9.8522× 104 | 6.9279× 103 | 1.1830× 103 | |
F16 | mean | 7.0208× 103 | 6.4016× 103 | 4.8320× 103 | 5.3092× 103 | 6.7794× 103 | 5.7443× 103 | 6.1604× 103 | 8.8893× 103 | 5.6002× 103 | 4.7585× 103 | 5.8946× 103 | 5.2741× 103 |
std | 6.3029× 102 | 7.1431× 102 | 6.0708× 102 | 1.1795× 103 | 6.9960× 102 | 7.4077× 102 | 5.4160× 102 | 1.1174× 103 | 7.7195× 102 | 5.5010× 102 | 7.1371× 102 | 5.1970× 102 | |
F17 | mean | 5.4594× 103 | 5.9235× 103 | 4.5471× 103 | 4.9120× 103 | 5.4187× 103 | 4.4947× 103 | 5.1200× 103 | 6.1932× 103 | 5.3864× 103 | 4.5835× 103 | 5.8588× 103 | 4.5123× 103 |
std | 5.6769× 102 | 7.9792× 102 | 6.5705× 102 | 9.3993× 102 | 6.6691× 102 | 3.8943× 102 | 6.2444× 102 | 7.5057× 102 | 6.6045× 102 | 1.2004× 103 | 5.9552× 102 | 4.4271× 102 | |
F18 | mean | 2.6621× 106 | 6.7322× 105 | 2.5007× 106 | 3.5943× 106 | 6.5375× 106 | 4.1983× 106 | 9.3063× 104 | 1.6759× 107 | 2.9216× 105 | 3.0857× 106 | 2.2075× 105 | 1.4884× 106 |
std | 1.6010× 106 | 2.6362× 105 | 1.2516× 106 | 2.2512× 106 | 3.1007× 106 | 1.8357× 106 | 4.1975× 104 | 1.1618× 107 | 1.4517× 105 | 1.6189× 106 | 1.1547× 105 | 5.6961× 105 | |
F19 | mean | 2.0478× 107 | 7.3673× 103 | 8.8842× 103 | 5.8296× 103 | 8.2060× 106 | 1.2716× 104 | 8.7776× 103 | 5.9345× 103 | 8.2243× 103 | 3.3839× 105 | 7.4914× 103 | 3.8244× 103 |
std | 1.5773× 107 | 4.9003× 103 | 1.6854× 104 | 4.6241× 103 | 5.7651× 106 | 1.1651× 104 | 9.2107× 103 | 5.2469× 103 | 8.5088× 103 | 2.3844× 105 | 5.8117× 103 | 1.3403× 103 | |
F20 | mean | 4.8156× 103 | 5.5846× 103 | 4.2361× 103 | 5.5287× 103 | 5.6094× 103 | 4.6611× 103 | 4.9284× 103 | 6.6569× 103 | 5.2328× 103 | 5.2528× 103 | 5.4210× 103 | 4.6769× 103 |
std | 5.1783× 102 | 5.7573× 102 | 6.9821× 102 | 1.6169× 103 | 5.4963× 102 | 4.5768× 102 | 4.5800× 102 | 3.4571× 102 | 4.7387× 102 | 1.3730× 103 | 4.3822× 102 | 5.4930× 102 | |
F21 | mean | 3.0769× 103 | 3.3189× 103 | 2.7472× 103 | 2.8097× 103 | 2.9303× 103 | 2.9238× 103 | 2.8678× 103 | 3.3408× 103 | 2.9789× 103 | 2.7703× 103 | 3.3226× 103 | 2.5931× 103 |
std | 9.6224× 101 | 1.2900× 102 | 6.6601× 101 | 1.5486× 102 | 9.5086× 101 | 5.7827× 101 | 9.2293× 101 | 9.9453× 101 | 1.2854× 102 | 1.1572× 102 | 1.7464× 102 | 3.3507× 101 | |
F22 | mean | 2.3682× 104 | 2.2456× 104 | 1.7810× 104 | 1.8420× 104 | 1.9373× 104 | 2.1876× 104 | 2.2099× 104 | 2.4743× 104 | 1.8637× 104 | 2.9514× 104 | 1.9858× 104 | 1.9522× 104 |
std | 2.2739× 103 | 3.1970× 103 | 3.2386× 103 | 4.4716× 103 | 1.5509× 103 | 3.0638× 103 | 2.4624× 103 | 3.6785× 102 | 1.4238× 103 | 7.5541× 103 | 1.1098× 103 | 1.2455× 103 | |
F23 | mean | 3.7322× 103 | 4.0449× 103 | 3.2214× 103 | 3.1615× 103 | 3.4100× 103 | 3.5780× 103 | 3.5774× 103 | 3.9007× 103 | 3.6484× 103 | 3.2099× 103 | 3.7893× 103 | 3.1388× 103 |
std | 1.2203× 102 | 2.5004× 102 | 6.3055× 101 | 5.1478× 101 | 6.3659× 101 | 5.9218× 101 | 1.1621× 102 | 1.3628× 102 | 1.4742× 102 | 5.4358× 101 | 1.3995× 102 | 4.3529× 101 | |
F24 | mean | 4.6520× 103 | 5.0088× 103 | 3.8244× 103 | 3.6369× 103 | 4.0183× 103 | 4.2925× 103 | 4.1980× 103 | 4.5563× 103 | 4.4495× 103 | 3.6930× 103 | 4.6006× 103 | 3.6110× 103 |
std | 2.2888× 102 | 5.3163× 102 | 1.0782× 102 | 8.4064× 101 | 1.1986× 102 | 1.0559× 102 | 1.4439× 102 | 2.3528× 102 | 2.7535× 102 | 7.9090× 101 | 1.9475× 102 | 4.3077× 101 | |
F25 | mean | 4.9747× 103 | 3.7091× 103 | 3.6117× 103 | 3.4974× 103 | 3.6249× 103 | 5.1695× 103 | 3.5389× 103 | 3.7553× 103 | 3.3525× 103 | 4.1318× 103 | 3.3077× 103 | 3.3562× 103 |
std | 3.9930× 102 | 9.7696× 101 | 7.4014× 101 | 3.9488× 101 | 9.2461× 101 | 5.0022× 102 | 6.2828× 101 | 1.0524× 102 | 6.7634× 101 | 1.9647× 102 | 5.9860× 101 | 5.1087× 101 | |
F26 | mean | 1.9919× 104 | 2.3920× 104 | 1.4278× 104 | 9.4952× 103 | 1.3588× 104 | 2.0100× 104 | 1.3091× 104 | 1.8071× 104 | 1.7686× 104 | 1.0887× 104 | 2.1498× 104 | 9.0624× 103 |
std | 1.8088× 103 | 3.2193× 103 | 3.1031× 103 | 5.0358× 102 | 1.3213× 103 | 3.3593× 103 | 1.9563× 103 | 1.6297× 103 | 1.5716× 103 | 7.6587× 102 | 2.2914× 103 | 5.5218× 102 | |
F27 | mean | 4.2327× 103 | 4.1328× 103 | 3.5945× 103 | 3.4367× 103 | 3.8055× 103 | 4.0934× 103 | 3.5445× 103 | 4.0157× 103 | 3.9980× 103 | 3.5194× 103 | 3.7098× 103 | 3.5263× 103 |
std | 2.4959× 102 | 4.1808× 102 | 7.7135× 101 | 4.9131× 101 | 1.3087× 102 | 1.4688× 102 | 7.7158× 101 | 2.4917× 102 | 2.4679× 102 | 4.7968× 101 | 1.2183× 102 | 3.9839× 101 | |
F28 | mean | 5.6824× 103 | 3.7775× 103 | 3.7433× 103 | 3.5264× 103 | 3.7073× 103 | 6.8902× 103 | 3.7673× 103 | 4.3062× 103 | 3.4623× 103 | 4.5759× 103 | 3.4018× 103 | 3.4917× 103 |
std | 4.9773× 102 | 9.3473× 101 | 6.0429× 101 | 3.9822× 101 | 6.0461× 101 | 8.5430× 102 | 1.3487× 102 | 4.1938× 102 | 3.7518× 101 | 4.0310× 102 | 3.6614× 101 | 2.4332× 101 | |
F29 | mean | 1.0688× 104 | 8.2739× 103 | 6.1100× 103 | 6.0089× 103 | 8.5881× 103 | 7.3525× 103 | 7.3305× 103 | 8.1931× 103 | 7.4736× 103 | 6.2400× 103 | 7.3982× 103 | 6.4274× 103 |
std | 1.1410× 103 | 6.4737× 102 | 6.7163× 102 | 5.0757× 102 | 7.9917× 102 | 4.7817× 102 | 6.1574× 102 | 1.4097× 103 | 6.4783× 102 | 5.4218× 102 | 5.7776× 102 | 3.1264× 102 | |
F30 | mean | 2.5154× 108 | 4.1555× 105 | 6.0889× 104 | 3.3083× 104 | 7.2816× 107 | 3.9971× 106 | 5.1329× 104 | 1.3432× 106 | 2.8723× 104 | 1.2941× 107 | 1.2044× 104 | 1.2884× 104 |
std | 1.0039× 108 | 2.2547× 105 | 6.8850× 104 | 2.0488× 104 | 3.1741× 107 | 3.0652× 106 | 5.2548× 104 | 1.3423× 106 | 3.1480× 104 | 6.6092× 106 | 4.7693× 103 | 2.7861× 103 |
Statistical Results | CSA | GTO | SBOA | SAO | RIME | GRO | RBMO | ED | HHWOA | IGWO | RTH |
---|---|---|---|---|---|---|---|---|---|---|---|
Dim = 30 (+/=/−) | 30/0/0 | 27/1/2 | 27/3/0 | 28/2/0 | 30/0/0 | 29/1/0 | 21/3/6 | 29/1/0 | 22/4/4 | 25/5/0 | 24/0/6 |
Dim = 50 (+/=/−) | 30/0/0 | 28/0/2 | 25/4/1 | 27/3/0 | 30/0/0 | 28/2/0 | 25/2/3 | 30/0/0 | 25/2/3 | 27/1/2 | 22/4/4 |
Dim = 100 (+/=/−) | 30/0/0 | 27/0/3 | 25/5/0 | 27/2/1 | 30/0/0 | 30/0/0 | 26/1/3 | 30/0/0 | 24/2/4 | 25/5/0 | 22/5/3 |
Suites | CEC2017 | |||||
---|---|---|---|---|---|---|
Dimensions | 30 | 50 | 100 | |||
Algorithms | ||||||
CSA | 9.17 | 12 | 9.55 | 12 | 9.72 | 12 |
GTO | 8.44 | 9 | 8.93 | 10 | 8.62 | 10 |
SBOA | 4.76 | 3 | 4.34 | 3 | 4.58 | 3 |
SAO | 5.00 | 4 | 4.34 | 3 | 4.58 | 3 |
RIME | 9.03 | 11 | 8.10 | 9 | 7.79 | 8 |
GRO | 6.72 | 7 | 7.13 | 8 | 8.55 | 9 |
RBMO | 3.44 | 2 | 4.27 | 2 | 4.48 | 2 |
ED | 8.93 | 10 | 9.44 | 11 | 9.65 | 11 |
HHWOA | 6.00 | 6 | 6.13 | 6 | 5.31 | 5 |
IGWO | 5.79 | 5 | 6.03 | 5 | 6.48 | 7 |
RTH | 7.89 | 8 | 7.00 | 7 | 5.68 | 6 |
IRTH | 2.75 | 1 | 2.68 | 1 | 2.51 | 1 |
Algorithm | CSA | GTO | SBOA | SAO | RIME | GRO | RBMO | ED | HHWOA | IGWO | RTH | IRTH |
---|---|---|---|---|---|---|---|---|---|---|---|---|
mean | 419.61 | 416.11 | 415.17 | 415.19 | 419.99 | 416.63 | 435.07 | 416.94 | 416.05 | 535.52 | 419.16 | 414.26 |
median | 418.42 | 415.63 | 414.98 | 415.09 | 419.39 | 417.10 | 428.35 | 416.71 | 415.58 | 533.47 | 417.74 | 414.91 |
max | 445.69 | 421.51 | 421.69 | 416.88 | 435.52 | 419.93 | 475.40 | 422.28 | 428.34 | 589.77 | 439.95 | 415.40 |
min | 415.66 | 408.92 | 408.00 | 414.44 | 414.64 | 411.06 | 414.99 | 415.53 | 414.39 | 485.18 | 416.23 | 409.81 |
Algorithm | CSA | GTO | SBOA | SAO | RIME | GRO | RBMO | ED | HHWOA | IGWO | RTH | IRTH |
---|---|---|---|---|---|---|---|---|---|---|---|---|
mean | 418.74 | 414.98 | 415.29 | 414.82 | 419.21 | 417.17 | 431.96 | 417.19 | 415.50 | 543.70 | 418.03 | 413.16 |
median | 417.97 | 414.96 | 415.05 | 414.75 | 418.74 | 417.19 | 430.74 | 417.11 | 415.60 | 542.89 | 417.68 | 414.57 |
max | 426.49 | 421.63 | 417.93 | 415.97 | 425.32 | 419.16 | 455.78 | 418.86 | 417.06 | 593.32 | 421.11 | 415.21 |
min | 415.20 | 410.62 | 414.22 | 413.89 | 416.03 | 411.58 | 416.33 | 415.46 | 414.07 | 504.76 | 416.66 | 409.11 |
Algorithm | CSA | GTO | SBOA | SAO | RIME | GRO | RBMO | ED | HHWOA | IGWO | RTH | IRTH |
---|---|---|---|---|---|---|---|---|---|---|---|---|
mean | 448.58 | 443.14 | 432.96 | 435.98 | 453.42 | 437.32 | Inf | 435.80 | 434.59 | Inf | 439.48 | 426.47 |
median | 444.99 | 438.96 | 434.45 | 434.07 | 455.38 | 436.99 | 467.35 | 435.69 | 433.48 | 627.88 | 436.34 | 426.56 |
max | 482.86 | 493.82 | 438.50 | 455.64 | 476.76 | 441.13 | Inf | 440.04 | 458.43 | Inf | 488.07 | 432.37 |
min | 436.95 | 433.27 | 424.53 | 424.87 | 433.35 | 434.38 | 440.05 | 432.85 | 431.87 | 549.64 | 426.46 | 415.65 |
Algorithm | CSA | GTO | SBOA | SAO | RIME | GRO | RBMO | ED | HHWOA | IGWO | RTH | IRTH |
---|---|---|---|---|---|---|---|---|---|---|---|---|
mean | 532.25 | 497.29 | Inf | Inf | 464.62 | 443.95 | Inf | 442.58 | 484.80 | Inf | 500.90 | 436.81 |
median | 523.86 | 506.76 | 453.80 | 468.00 | 462.77 | 443.32 | Inf | 441.07 | 476.71 | Inf | 500.81 | 437.33 |
max | 658.77 | 553.79 | Inf | Inf | 520.56 | 450.93 | Inf | 458.01 | 647.34 | Inf | 608.92 | 450.47 |
min | 447.32 | 435.26 | 418.55 | 417.41 | 426.01 | 439.00 | 464.20 | 428.98 | 414.55 | 532.06 | 433.89 | 415.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Yuan, P.; Hu, P.; Yang, Z.; Ke, S.; Huang, L.; Zhang, P. Multi-Strategy Improved Red-Tailed Hawk Algorithm for Real-Environment Unmanned Aerial Vehicle Path Planning. Biomimetics 2025, 10, 31. https://doi.org/10.3390/biomimetics10010031
Wang M, Yuan P, Hu P, Yang Z, Ke S, Huang L, Zhang P. Multi-Strategy Improved Red-Tailed Hawk Algorithm for Real-Environment Unmanned Aerial Vehicle Path Planning. Biomimetics. 2025; 10(1):31. https://doi.org/10.3390/biomimetics10010031
Chicago/Turabian StyleWang, Mingen, Panliang Yuan, Pengfei Hu, Zhengrong Yang, Shuai Ke, Longliang Huang, and Pai Zhang. 2025. "Multi-Strategy Improved Red-Tailed Hawk Algorithm for Real-Environment Unmanned Aerial Vehicle Path Planning" Biomimetics 10, no. 1: 31. https://doi.org/10.3390/biomimetics10010031
APA StyleWang, M., Yuan, P., Hu, P., Yang, Z., Ke, S., Huang, L., & Zhang, P. (2025). Multi-Strategy Improved Red-Tailed Hawk Algorithm for Real-Environment Unmanned Aerial Vehicle Path Planning. Biomimetics, 10(1), 31. https://doi.org/10.3390/biomimetics10010031