Natural Cyclic Peptides: Synthetic Strategies and Biomedical Applications
Abstract
:1. Introduction
2. Head-to-Tail Cyclization
3. Side-Chain-to-Side-Chain
4. Head-to-Side-Chain
5. Tail-to-Side-Chain
6. Discussion
7. Conclusions and Future Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Thorstholm, L.; Craik, D.J. Discovery and applications of naturally occurring cyclic peptides. Drug Discov. Today Technol. 2012, 9, e13–e21. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, M.A.; McGaw, L.J. Natural Cyclic Peptides as an Attractive Modality for Therapeutics: A Mini Review. Molecules 2018, 23, 2080. [Google Scholar] [CrossRef] [PubMed]
- Zorzi, A.; Deyle, K.; Heinis, C. Cyclic Peptide Therapeutics: Past, Present and Future. Curr. Opin. Chem. Biol. 2017, 38, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Nielsen, A.L.; Heinis, C. Cyclic Peptides for Drug Development. Angew. Chem. Int. Ed. 2024, 63, e202308251. [Google Scholar] [CrossRef] [PubMed]
- Diamond, G.; Beckloff, N.; Weinberg, A.; Kisich, K.O. The Roles of Antimicrobial Peptides in Innate Host Defense. Curr. Pharm. Des. 2009, 15, 2377–2392. [Google Scholar] [CrossRef]
- Fu, J.; Zong, X.; Jin, M.; Min, J.; Wang, F.; Wang, Y. Mechanisms and Regulation of Defensins in Host Defense. Signal Transduct. Target. Ther. 2023, 8, 300. [Google Scholar] [CrossRef]
- Mustafa, K.; Kanwal, J.; Musaddiq, S.; Khakwani, S. Bioactive Peptides and Their Natural Sources. In Functional Foods and Nutraceuticals: Bioactive Components, Formulations and Innovations; Egbuna, C., Dable Tupas, G., Eds.; Springer International Publishing: Cham, Germany, 2020; pp. 75–97. [Google Scholar] [CrossRef]
- Ahmed, I.; Asgher, M.; Sher, F.; Hussain, S.M.; Nazish, N.; Joshi, N.; Sharma, A.; Parra-Saldívar, R.; Bilal, M.; Iqbal, H.M.N. Exploring Marine as a Rich Source of Bioactive Peptides: Challenges and Opportunities from Marine Pharmacology. Mar. Drugs 2022, 20, 208. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Kumar, S.; Bhat, H.F. Bioactive Peptides of Animal Origin: A Review. J. Food Sci. Technol. 2015, 52, 5377–5392. [Google Scholar] [CrossRef]
- Robinson, S.D.; Undheim, E.A.B.; Ueberheide, B.; King, G.F. Venom Peptides as Therapeutics: Advances, Challenges and the Future of Venom-Peptide Discovery. Expert Rev. Proteom. 2017, 14, 931–939. [Google Scholar] [CrossRef]
- Lewis, R.J.; Garcia, M.L. Therapeutic Potential of Venom Peptides. Nat. Rev. Drug Discov. 2003, 2, 790–802. [Google Scholar] [CrossRef]
- Daly, N.L.; Wilson, D.T. Plant—Derived Cyclic Peptides. Biochem. Soc. Trans. 2021, 49, 1279–1285. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lin, M.; Xu, D.; Lai, D.; Zhou, L. Structural Diversity and Biological Activities of Fungal Cyclic Peptides, Excluding Cyclodipeptides. Molecules 2017, 22, 2069. [Google Scholar] [CrossRef] [PubMed]
- Bertran, M.T.; Walmsley, R.; Cummings, T.; Aramburu, I.V.; Benton, D.J.; Molina, R.M.; Assalaarachchi, J.; Chasampalioti, M.; Swanton, T.; Joshi, D.; et al. A Cyclic Peptide Toolkit Reveals Mechanistic Principles of Peptidylarginine Deiminase IV Regulation. Nat. Commun. 2024, 15, 9746. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.; Zhang, Q.; Jin, L. Natural and Man-Made Cyclic Peptide-Based Antibiotics. Antibiotics 2023, 12, 42. [Google Scholar] [CrossRef] [PubMed]
- Helmy, N.M.; Parang, K. Cyclic Peptides with Antifungal Properties Derived from Bacteria, Fungi, Plants, and Synthetic Sources. Pharmaceuticals 2023, 16, 892. [Google Scholar] [CrossRef]
- Ribeiro, R.; Costa, L.; Pinto, E.; Sousa, E.; Fernandes, C. Therapeutic Potential of Marine-Derived Cyclic Peptides as Antiparasitic Agents. Mar. Drugs 2023, 21, 609. [Google Scholar] [CrossRef]
- Ramadhani, D.; Maharani, R.; Gazzali, A.M.; Muchtaridi, M. Cyclic Peptides for the Treatment of Cancers: A Review. Molecules 2022, 27, 4428. [Google Scholar] [CrossRef]
- Dougherty, P.G.; Sahni, A.; Pei, D. Understanding Cell Penetration of Cyclic Peptides. Chem. Rev. 2019, 119, 10241–10287. [Google Scholar] [CrossRef]
- Sugita, M.; Sugiyama, S.; Fujie, T.; Yoshikawa, Y.; Yanagisawa, K.; Ohue, M.; Akiyama, Y. Large-Scale Membrane Permeability Prediction of Cyclic Peptides Crossing a Lipid Bilayer Based on Enhanced Sampling Molecular Dynamics Simulations. J. Chem. Inf. Model. 2021, 61, 3681–3695. [Google Scholar] [CrossRef]
- Linker, S.M.; Schellhaas, C.; Kamenik, A.S.; Veldhuizen, M.M.; Waibl, F.; Roth, H.-J.; Fouché, M.; Rodde, S.; Riniker, S. Lessons for Oral Bioavailability: How Conformationally Flexible Cyclic Peptides Enter and Cross Lipid Membranes. J. Med. Chem. 2023, 66, 2773–2788. [Google Scholar] [CrossRef]
- Jiang, X.; Gao, L.; Li, Z.; Shen, Y.; Lin, Z.-H. Development and Challenges of Cyclic Peptides for Immunomodulation. Curr. Protein Pept. Sci. 2024, 25, 353–375. [Google Scholar] [CrossRef] [PubMed]
- Bechtler, C.; Lamers, C. Macrocyclization Strategies for Cyclic Peptides and Peptidomimetics. RSC Med. Chem. 2021, 12, 1325–1351. [Google Scholar] [CrossRef] [PubMed]
- Martí-Centelles, V.; Pandey, M.D.; Burguete, M.I.; Luis, S.V. Macrocyclization Reactions: The Importance of Conformational, Configurational, and Template-Induced Preorganization. Chem. Rev. 2015, 115, 8736–8834. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.; Sousa, E.; Fernandes, C. Cyclic Peptides in Pipeline: What Future for These Great Molecules? Pharmaceuticals 2023, 16, 996. [Google Scholar] [CrossRef] [PubMed]
- Marsault, E.; Peterson, M.L. Macrocycles Are Great Cycles: Applications, Opportunities, and Challenges of Synthetic Macrocycles in Drug Discovery. J. Med. Chem. 2011, 54, 1961–2004. [Google Scholar] [CrossRef]
- White, C.J.; Yudin, A.K. Contemporary Strategies for Peptide Macrocyclization. Nat. Chem. 2011, 3, 509–524. [Google Scholar] [CrossRef]
- Lu, H.; Batey, R.A. Total Synthesis of Chaiyaphumines A-D: A Case Study Comparing Macrolactonization and Macrolactamization Approaches. Tetrahedron Lett. 2022, 108, 154138. [Google Scholar] [CrossRef]
- Wells, T.N.C.; van Huijsduijnen, R.H.; Van Voorhis, W.C. Malaria Medicines: A Glass Half Full? Nat. Rev. Drug Discov. 2015, 14, 424–442. [Google Scholar] [CrossRef]
- Berninger, M.; Schmidt, I.; Ponte-Sucre, A.; Holzgrabe, U. Novel Lead Compounds in Pre-Clinical Development against African Sleeping Sickness. Med. Chem. Commun. 2017, 8, 1872–1890. [Google Scholar] [CrossRef]
- Lam, K.S.; Leet, J.E.; Schroeder, D.R.; Krishnan, B.S.; Matson, J.A. Himastatin, a new antitumor antibiotic from streptomyces hygroscopicus. I. Taxonomy of producing organism, fermentation and biological activity. J. Antibiot. 1990, 43, 956–966. [Google Scholar] [CrossRef]
- Leet, J.E.; Schroeder, D.R.; Krishnan, B.S.; Matson, J.A. Himastatin, a new antitumor antibiotic from streptomyces hygroscopicus. II. isolation and characterization. J. Antibiot. 1990, 43, 961–966. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, K.A.; Schissel, C.K.; Pentelute, B.L.; Movassaghi, M. Total Synthesis of Himastatin. Science 2022, 375, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Ohsawa, K.; Fukaya, S.; Doi, T. Total Synthesis and Structural Determination of Cyclodepsipeptide Decatransin. Org. Lett. 2022, 24, 5552–5556. [Google Scholar] [CrossRef] [PubMed]
- Luesch, H.; Paavilainen, V.O. Natural Products as Modulators of Eukaryotic Protein Secretion. Nat. Prod. Rep. 2020, 37, 717–736. [Google Scholar] [CrossRef] [PubMed]
- Junne, T.; Wong, J.; Studer, C.; Aust, T.; Bauer, B.W.; Beibel, M.; Bhullar, B.; Bruccoleri, R.; Eichenberger, J.; Estoppey, D.; et al. Decatransin, a New Natural Product Inhibiting Protein Translocation at the Sec61/SecYEG Translocon. J. Cell Sci. 2015, 128, 1217–1229. [Google Scholar] [CrossRef] [PubMed]
- Dang, T.; Süssmuth, R.D. Bioactive Peptide Natural Products as Lead Structures for Medicinal Use. Acc. Chem. Res. 2017, 50, 1566–1576. [Google Scholar] [CrossRef]
- Usmani, S.S.; Bedi, G.; Samuel, J.S.; Singh, S.; Kalra, S.; Kumar, P.; Ahuja, A.A.; Sharma, M.; Gautam, A.; Raghava, G.P.S. THPdb: Database of FDA-Approved Peptide and Protein Therapeutics. PLoS ONE 2017, 12, e0181748. [Google Scholar] [CrossRef]
- Lee, B.W.; Ha, T.K.Q.; Park, E.J.; Cho, H.M.; Ryu, B.; Doan, T.P.; Lee, H.J.; Oh, W.K. Melicopteline A–E, Unusual Cyclopeptide Alkaloids with Antiviral Activity against Influenza A Virus from Melicope pteleifolia. J. Org. Chem. 2020, 86, 1437–1447. [Google Scholar] [CrossRef]
- Jang, J.; Lee, J.; Lee, S.B.; Choi, S.H.; Park, E.J.; Yoon, S.J.; An, J.S.; Oh, D.-C.; Oh, W.K.; Hong, S. Total Synthesis of Melicoptines C–E: Antiviral Cyclopeptides Containing a Hexahydropyrrolo[2,3-b]indole Moiety. Org. Lett. 2022, 24, 6043–6048. [Google Scholar] [CrossRef]
- Zhou, Y.-F.; Hu, K.; Wang, F.; Tang, J.-W.; Zhang, L.; Sun, H.D.; Cai, X.-H.; Puno, P.-T. 3-Hydroxy-4-Methyldecanoic Acid-Containing Cyclotetradepsipeptides from an Endolichenic Beauveria sp. J. Nat. Prod. 2021, 84, 1244–1253. [Google Scholar] [CrossRef]
- Saha, S.; Auddy, S.S.; Chatterjee, A.; Sen, P.; Goswami, R.K. Late-Stage Functionalization: Total Synthesis of Beauveamide A and Its Congeners and Their Anticancer Activities. Org. Lett. 2022, 24, 7113–7117. [Google Scholar] [CrossRef] [PubMed]
- Kozuma, S.; Hirota-Takahata, Y.; Fukuda, D.; Kuraya, N.; Nakajima, M.; Ando, O. Identification and Biological Activity of Ogipeptins, Novel LPS Inhibitors Produced by Marine Bacterium. J. Antibiot. 2017, 70, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Hirota-Takahata, Y.; Kozuma, S.; Kuraya, N.; Fukuda, D.; Nakajima, M.; Takatsu, T.; Ando, O. Ogipeptins, Novel Inhibitors of LPS: Physicochemical Properties and Structural Elucidation. J. Antibiot. 2017, 70, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Takiguchi, S.; Hirota-Takahata, Y.; Nishi, T. Total Synthesis and Structural Elucidation of Ogipeptins. Org. Lett. 2022, 24, 4935–4938. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Singh, M.; Wohlrab, A.; Yu, T.-Y.; Patti, G.J.; O’Connor, R.D.; VanNieuwenhze, M.; Schaefer, J. Isotridecanyl Side Chain of Plusbacin-A3 is Essential for the Transglycosylase Inhibition of Peptidoglycan Biosynthesis. Biochemistry 2013, 52, 1973–1979. [Google Scholar] [CrossRef]
- Maki, H.; Miura, K.; Yamano, Y. Katanosin B and Plusbacin A3, Inhibitors of Peptidoglycan Synthesis in Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2001, 45, 1823–1827. [Google Scholar] [CrossRef]
- Shoji, J.; Hinoo, H.; Katayama, T.; Matsumoto, K.; Tanimoto, T.; Hattori, T.; Higashiyama, I.; Miwa, H.; Motokawa, K.; Yoshida, T. Isolation and Characterization of New Peptide Antibiotics, Plusbacins A1-A4 and B1-B4. J. Antibiot. 1992, 45, 817–823. [Google Scholar] [CrossRef]
- Katsuyama, A.; Paudel, A.; Panthee, S.; Hamamoto, H.; Kawakami, T.; Hojo, H.; Yakushiji, F.; Ichikawa, S. Total Synthesis and Antibacterial Investigation of Plusbacin A3. Org. Lett. 2017, 19, 3771–3774. [Google Scholar] [CrossRef]
- Takashina, K.; Katsuyama, A.; Kaguchi, R.; Yamamoto, K.; Sato, T.; Takahashi, S.; Horiuchi, M.; Yokota, S.; Ichikawa, S. Solid-Phase Total Synthesis of Plusbacin A3. Org. Lett. 2022, 24, 2253–2257. [Google Scholar] [CrossRef]
- Wohlrab, A.; Lamer, R.; VanNieuwenhze, M.S. Total Synthesis of Plusbacin A3: A Depsipeptide Antibiotic Active Against Vancomycin-Resistant Bacteria. J. Am. Chem. Soc. 2007, 129, 4175–4177. [Google Scholar] [CrossRef]
- Lam, Y.K.; Zink, D.L.; Williams, D.L.; Burgess, B.W. Additional Cochinmicins from a Microbispora sp. J. Antibiot. 1992, 45, 1792–1794. [Google Scholar] [CrossRef] [PubMed]
- Lam, Y.K.; Williams, D.L.; Sigmund, J.M.; Sanchez, M.; Genilloud, O.; Kong, Y.L.; Stevens-Miles, S.; Huang, L.; Garrity, G.M. Cochinmicins, Novel and Potent Cyclodepsipeptide Endothelin Antagonists from a Microbispora sp. I. Production, Isolation, and Characterization. J. Antibiot. 1992, 45, 1709–1716. [Google Scholar] [CrossRef] [PubMed]
- Zink, D.; Hensens, O.D.; Lam, Y.K.; Reamer, R.; Liesch, J.M. Cochinmicins, Novel and Potent Cyclodepsipeptide Endothelin Antagonists from a Microbispora sp. II. Structure Determination. J. Antibiot. 1992, 45, 1717–1722. [Google Scholar] [CrossRef] [PubMed]
- Schnegotzki, R.; Wiebach, V.; Sánchez-Hidalgo, M.; Tietzmann, M.; zur Bonsen, A.B.; Genilloud, O.; Süssmuth, R.D. Total Synthesis and Biosynthesis of Depsipeptide of Cochinmicin I. Org. Lett. 2022, 24, 2344–2348. [Google Scholar] [CrossRef] [PubMed]
- Posada, L.; Rey, L.; Villalba, J.; Colombo, S.; Aubriot, L.; Badagian, N.; Brena, B.; Serra, G. Cyclopeptides Natural Products as Herbicides and Inhibitors of Cyanobacteria: Synthesis of Versicotides E and F. ChemistrySelect 2022, 7, e202201956. [Google Scholar] [CrossRef]
- Peng, J.; Gao, H.; Zhang, X.; Wang, S.; Wu, C.; Gu, Q.; Guo, P.; Zhu, T.; Li, D. Psychrophilins E–H and versicotide C, cyclic peptides from the marine-derived fungus aspergillus versicolor ZLN-60. J. Nat. Prod. 2014, 77, 2218–2223. [Google Scholar] [CrossRef]
- Chen, R.; Cheng, Z.; Huang, J.; Liu, D.; Wu, C.; Guo, P.; Lin, W. Versicotides D–F, new cyclopeptides with lipid-lowering activities. RSC Adv. 2017, 7, 49235–49243. [Google Scholar] [CrossRef]
- Zhou, L.-N.; Gao, H.-Q.; Cai, S.-X.; Zhu, T.-J.; Gu, Q.-Q.; Li, D.-H. Two New Cyclic Pentapeptides from the Marine-Derived Fungus Aspergillus versicolor. Helv. Chim. Acta 2011, 94, 1065–1070. [Google Scholar] [CrossRef]
- Xu, W.F.; Hou, X.M.; Yao, F.H.; Zheng, N.; Li, J.; Wang, C.Y.; Yang, R.Y.; Shao, C.L. Xylapeptide A, an Antibacterial Cyclopentapeptide with an Uncommon l-Pipecolinic Acid Moiety from the Associated Fungus Xylaria sp. (GDG-102). Sci. Rep. 2017, 7, 6937. [Google Scholar] [CrossRef]
- Kurnia, D.Y.; Maharani, R.; Hidayat, A.T.; Al-Anshori, J.; Wiani, I.; Mayanti, T.; Nurlelasari; Harneti, D.; Supratman, U. Total Synthesis of Xylapeptide B [Cyclo-(l-Leu-l-Pro-N-Me-Phe-l-Val-d-Ala)]. J. Heterocyclic Chem. 2022, 59, 131–136. [Google Scholar] [CrossRef]
- Donarska, B.; Laczkowski, K.Z. Recent Advances in the Development of Elastase Inhibitors. Future Med. Chem. 2020, 12, 1809–1813. [Google Scholar] [CrossRef] [PubMed]
- Thierry, A.R. Anti-Protease Treatments Targeting Plasmin-(ogen) and Neutrophil Elastase May Be Beneficial in Fighting COVID-19. Physiol. Rev. 2020, 100, 1597–1598. [Google Scholar] [CrossRef] [PubMed]
- Issac, M.; Aknin, M.; Gauvin-Bialecki, A.; De Voogd, N.; Ledoux, A.; Frederich, M.; Kashman, Y.; Carmeli, S. Cyclo-Theonellazoles A-C, Potent Protease Inhibitors from the Marine Sponge Theonella aff. swinhoei. J. Nat. Prod. 2017, 80, 1110–1116. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, M.; Xu, H.; Zhang, T.; Zhang, S.; Zhao, X.; Jiang, P.; Li, J.; Ye, B.; Sun, Y.; et al. Elastase Inhibitor Cyclotheonellazole A: Total Synthesis and In Vivo Biological Evaluation for Acute Lung Injury. J. Med. Chem. 2022, 65, 2971–2987. [Google Scholar] [CrossRef] [PubMed]
- García-Domínguez, P.; Lorenzo, P.; Álvarez, R.; de Lera, A.R. Total Synthesis of the Proposed Structure of (−)-Novofumigatamide, Isomers Thereof, and Analogues. Part I. J. Org. Chem. 2022, 87, 12510–12527. [Google Scholar] [CrossRef]
- Hosoe, T.; Itabashi, T.; Kayoko, T.; Takashi, Y.; Ken-ichi, K. A Novofumigatamide, New Cyclic Tripeptide from Aspergillus novofumigatus. Heterocycles 2010, 81, 2143–2148. [Google Scholar] [CrossRef]
- Ramalho, S.D.; Pinto, M.E.F.; Ferreira, D.; Bolzani, V.S. Biologically Active Orbitides from the Euphorbiaceae Family. Planta Med. 2018, 84, 558–567. [Google Scholar] [CrossRef]
- Beirigo, P.J.D.S.; Torquato, H.F.V.; dos Santos, C.H.C.; de Carvalho, M.G.; Castro, R.N.; Paredes-Gamero, E.J.; de Sousa, P.T., Jr.; Jacinto, M.J.; da Silva, V.C. [1-8-NαC]-Zanriorb A1, a Proapoptotic Orbitide from Leaves of Zanthoxylum riedelianum. J. Nat. Prod. 2016, 79, 1454–1458. [Google Scholar] [CrossRef]
- Nadeem-Ul-Haque, M.; Bashir, A.; Karim, H.; Khan, S.N.; Shah, Z.A.; Jabeen, A.; Qayyum, S.; Ganesan, A.; Choudhary, M.I.; Shaheen, F. Synthesis of [1-8-NαC]-Zanriorb A1, Alanine-Containing Analogues, and Their Cytotoxic and Anti-inflammatory Activity. J. Pept. Sci. 2022, 28, e3405. [Google Scholar] [CrossRef]
- Blunt, J.; Cole, T.; Munro, M.; Sun, L.; rene Weber, J.F.; Ramasamy, K.; Abu Baker, H.; Majeed, A.; Bin, A.B. Bioactive Compounds. U.S. Patent Application No. 13/126,292, 18 August 2011. [Google Scholar]
- Wang, H.-Y.; Yang, H.; Holm, M.; Tom, H.; Oltion, K.; Qatran Al-Khdhairawi, A.A.; Weber, J.-F.F.; Blanchard, S.C.; Ruggero, D.; Taunton, J. Synthesis and Single-Molecule Imaging Reveal Stereospecific Enhancement of Binding Kinetics by the Antitumour eEF1A Antagonist SR-A3. Nat. Chem. 2022, 14, 1443–1450. [Google Scholar] [CrossRef]
- Cui, W.; Liu, C.; Zhuo, X.-B. Mitsunobu-Reaction-Based Total Solid-Phase Synthesis of Fanlizhicyclopeptide B. Chem. Nat. Compd. 2021, 57, 1086–1089. [Google Scholar] [CrossRef]
- Wu, P.; Wu, M.; Xu, L.; Xie, H.; Wei, X. Anti-inflammatory Cyclopeptides from Exocarps of Sugar-Apples. Food Chem. 2014, 152, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Ishiwata, H.; Nemoto, T.; Ojika, M.; Yamada, K. Isolation and stereostructure of doliculide, a cytotoxic cyclodepsipeptide from the Japanese sea hare Dolabella Auricularia. J. Org. Chem. 1994, 59, 4710–4711. [Google Scholar] [CrossRef]
- Braekman, J.C.; Daloze, D.; Moussiaux, B.; Riccio, R. Jaspamide from the marine sponge Jaspis Johnstoni. J. Nat. Prod. 1987, 50, 994–995. [Google Scholar] [CrossRef]
- Chan, W.R.; Tinto, W.F.; Manchand, P.S.; Todaro, L.J. Stereostructures of geodiamolides A and B, novel cyclodepsipeptides from the marine sponge Geodia sp. J. Org. Chem. 1987, 52, 3091–3093. [Google Scholar] [CrossRef]
- Tost, M.; Andler, O.; Kazmaier, U. A Matteson Homologation-Based Synthesis of Doliculide and Derivatives. Eur. J. Org. Chem. 2021, 2021, 6459–6471. [Google Scholar] [CrossRef]
- Wu, C.; Cichewicz, R.; Li, Y.; Liu, J.; Roe, B.; Ferretti, J.; Merritt, J.; Qi, F. Genomic Island TnSmu2 of Streptococcus Mutans Harbors a Nonribosomal Peptide Synthetase-Polyketide Synthase Gene Cluster Responsible for the Biosynthesis of Pigments Involved in Oxygen and H2O2 Tolerance. Appl. Environ. Microbiol. 2010, 76, 5815–5826. [Google Scholar] [CrossRef]
- Pultar, F.; Hansen, M.E.; Wolfrum, S.; Böselt, L.; Fróis-Martins, R.; Bloch, S.; Kravina, A.G.; Pehlivanoglu, D.; Schäffer, C.; LeibundGut Landmann, S.; et al. Mutanobactin D from the Human Microbiome: Total Synthesis, Configurational Assignment, and Biological Evaluation. J. Am. Chem. Soc. 2021, 143, 10389–10402. [Google Scholar] [CrossRef]
- Wang, X.; Du, L.; You, J.; King, J.B.; Cichewicz, R.H. Fungal Biofilm Inhibitors from a Human Oral Microbiome-Derived Bacterium. Org. Biomol. Chem. 2012, 10, 2044–2050. [Google Scholar] [CrossRef]
- Zafrir-Ilan, E.; Carmeli, S. Two New Microcyclamides from a Water Bloom of the Cyanobacterium Microcystis sp. Tetrahedron Lett. 2010, 51, 6602–6604. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, X.; Wang, H.; Liu, H.; Sui, Z.; Yan, B.; Du, Y. Total Synthesis of the Proposed Microcyclamides MZ602 and MZ568. J. Org. Chem. 2021, 86, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Wang, C.Y.; Kim, D.; Wang, H.-S.; Zhu, Y.-K.; Lee, S.K.; Yao, G.-Y.; Liang, D. Nitidumpeptins A and B, Cyclohexapeptides Isolated from Zanthoxylum nitidum var. tomentosum: Structural Elucidation, Total Synthesis, and Antiproliferative Activity in Cancer Cells. J. Org. Chem. 2021, 86, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Wélé, A.; Landon, C.; Labbé, H.; Vovelle, F.; Zhang, Y.; Bodo, B. Sequence and Solution Structure of Cherimolacyclopeptides A and B, Novel Cyclooctapeptides from the Seeds of Annona cherimola. Tetrahedron 2004, 60, 405–414. [Google Scholar] [CrossRef]
- Wélé, A.; Zhang, Y.; Ndoye, I.; Brouard, J.-P.; Pousset, J.-L.; Bodo, B. A Cytotoxic Cyclic Heptapeptide from the Seeds of Annona cherimola. J. Nat. Prod. 2004, 67, 1577–1579. [Google Scholar] [CrossRef]
- Wélé, A.; Ndoye, I.; Zhang, Y.; Brouard, J.-P.; Bodo, B. Cherimolacyclopeptide D, a Novel Cycloheptapeptide from the Seeds of Annona cherimola. Phytochemistry 2005, 66, 693–696. [Google Scholar] [CrossRef]
- Wélé, A.; Zhang, Y.; Brouard, J.-P.; Pousset, J.-L.; Bodo, B. Two Cyclopeptides from the Seeds of Annona cherimola. Phytochemistry 2005, 66, 2376–2380. [Google Scholar] [CrossRef]
- Wélé, A.; Zhang, Y.; Dibost, L.; Pousset, J.-L.; Bodo, B. Cyclic Peptides from the Seeds of Annona glauca and A. cherimola. Chem. Pharm. Bull. 2006, 54, 690–692. [Google Scholar] [CrossRef]
- Dahiya, R. Synthesis, Characterization, and Biological Evaluation of a Glycine-Rich Peptide-Cherimolacyclopeptide E. J. Chil. Chem. Soc. 2007, 52, 1224–1229. [Google Scholar] [CrossRef]
- Shaheen, F.; Rizvi, T.S.; Musharraf, S.G.; Ganesan, A.; Xiao, K.; Townsend, J.B.; Lam, K.S.; Choudhary, M.I. Solid-Phase Total Synthesis of Cherimolacyclopeptide E and Discovery of More Potent Analogues by Alanine Screening. J. Nat. Prod. 2012, 75, 1882–1887. [Google Scholar] [CrossRef]
- Yoshida, Y.; Inagaki, M.; Masuda, Y. Solid-Phase Synthesis and Bioactivity Evaluation of Cherimolacyclopeptide E. J. Pep. Sci. 2021, 27, e3308. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Suyama, T.L.; Engene, N.; Wingerd, J.S.; Matainaho, T.; Gerwick, W.H. Apratoxin D, a Potent Cytotoxic Cyclodepsipeptide from Papua New Guinea Collections of the Marine Cyanobacteria Lyngbya majuscula and Lyngbya sordida. J. Nat. Prod. 2008, 71, 1099–1103. [Google Scholar] [CrossRef] [PubMed]
- Matthew, S.; Schupp, P.J.; Luesch, H. Apratoxin E, a Cytotoxic Peptolide from a Guamanian Collection of the Marine Cyanobacterium Lyngbya bouillonii. J. Nat. Prod. 2008, 71, 1113–1116. [Google Scholar] [CrossRef] [PubMed]
- Thornburg, C.C.; Cowley, E.S.; Sikorska, J.; Shaala, L.A.; Ishmael, J.E.; Youssef, D.T.A.; McPhail, K.L. Apratoxin H and Apratoxin A Sulfoxide from the Red Sea Cyanobacterium Moorea producens. J. Nat. Prod. 2013, 76, 1781–1788. [Google Scholar] [CrossRef] [PubMed]
- Tarsis, E.M.; Rastelli, E.J.; Wengryniuk, S.E.; Coltart, D.M. The Apratoxin Marine Natural Products: Isolation, Structure Determination, and Asymmetric Total Synthesis. Tetrahedron 2015, 71, 5029–5044. [Google Scholar] [CrossRef]
- Luesch, H.; Yoshida, W.Y.; Moore, R.E.; Paul, V.J.; Corbett, T.H. Total Structure Determination of Apratoxin A, a Potent Novel Cytotoxin from the Marine Cyanobacterium Lyngbya majuscula. J. Am. Chem. Soc. 2001, 123, 5418–5423. [Google Scholar] [CrossRef]
- Liu, Y.; Law, B.K.; Luesch, H. Apratoxin A Reversibly Inhibits the Secretory Pathway by Preventing Cotranslational Translocation. Mol. Pharmacol. 2009, 76, 91–104. [Google Scholar] [CrossRef]
- Luesch, H.; Chanda, S.K.; Raya, R.M.; DeJesus, P.D.; Orth, A.P.; Walker, J.R.; Izpisúa Belmonte, J.C.; Schultz, P.G. A Functional Genomics Approach to the Mode of Action of Apratoxin A. Nat. Chem. Biol. 2006, 2, 158–167. [Google Scholar] [CrossRef]
- Wan, X.; Serrill, J.D.; Humphreys, I.R.; Tan, M.; McPhail, K.L.; Ganley, I.G.; Ishmael, J.E. ATG5 Promotes Death Signaling in Response to the Cyclic Depsipeptides Coibamide A and Apratoxin A. Mar. Drugs 2018, 16, 77. [Google Scholar] [CrossRef]
- Andler, O.; Kazmaier, U. Total Synthesis of Apatoxin A and B Using Matteson’s Homologation Approach. Org. Biomol. Chem. 2021, 19, 4866. [Google Scholar] [CrossRef]
- Torres, J.P.; Lin, Z.; Fenton, D.S.; Leavitt, L.U.; Niu, C.; Lam, P.Y.; Robes, J.M.; Peterson, R.T.; Concepcion, G.P.; Haygood, M.G.; et al. Boholamide A, an APD-Class, Hypoxia-Selective Cyclodepsipeptide. J. Nat. Prod. 2020, 83, 1249–1257. [Google Scholar] [CrossRef]
- Han, F.; Liu, G.; Zhang, X.; Ding, Y.; Wang, L.; Wu, Y.; Chen, Y.; Zhang, Q. Total Synthesis and Structure Revision of Boholamide A. Org. Lett. 2021, 23, 4976–4980. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, K.M.; Renner, M.K.; Jensen, P.R.; Fenical, W. Exumolides A and B: Antimicroalgal Cyclic Depsipeptides Produced by a Marine Fungus of the Genus Scytalidium. Tetrahedron Lett. 1998, 39, 2463–2466. [Google Scholar] [CrossRef]
- Rahmadani, A.; Masruhim, M.A.; Rijai, L.; Hidayat, A.T.; Supratman, U.; Maharani, R. Total Synthesis of Cyclohexadepsipeptides Exumolides A and B. Tetrahedron 2021, 83, 131987. [Google Scholar] [CrossRef]
- Wiese, J.; Abdelmohsen, U.R.; Motiei, A.; Humeida, U.H.; Imhoff, J.F. Bacicyclin, a new antibacterial cyclic hexapeptide from Bacillus sp. strain BC028 isolated from Mytilus edulis. Bioorganic Med. Chem. Lett. 2018, 28, 558–561. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, M.-H.; Chang, Q.; Zhao, X. Total Synthesis and Modification of Bacicyclin (1), a New Marine Antibacterial Cyclic Hexapeptide. Tetrahedron Lett. 2021, 63, 152705. [Google Scholar] [CrossRef]
- Inman, M.; Dexter, H.L.; Moody, C.J. Total Synthesis of the Cyclic Dodecapeptides Wewakazole and Wewakazole B. Org. Lett. 2017, 19, 3454–3457. [Google Scholar] [CrossRef]
- Malloy, K.L.; Villa, F.A.; Engene, N.; Matainaho, T.; Gerwick, L.; Gerwick, W.H. Cadenamides A and B, Bioactive Lipopeptides from the Marine Cyanobacterium Lyngbya sp. J. Nat. Prod. 2011, 74, 95–98. [Google Scholar] [CrossRef]
- Lopez, J.A.V.; Al-Lihaibi, S.S.; Alarif, W.M.; Abdel Lateff, A.; Nogata, Y.; Washio, K.; Morikawa, M.; Okino, T. New Bioactive Compounds from Marine Organisms. J. Nat. Prod. 2016, 79, 1213–1218. [Google Scholar] [CrossRef]
- Linder, J.; Garner, T.P.; Williams, H.E.L.; Searle, M.S.; Moody, C.J. Synthesis of the Marine Natural Product Cyclocinamide A and Analogues: Discovery of Potent Inhibitors of p53−MDM2 Interaction. J. Am. Chem. Soc. 2011, 133, 1044–1051. [Google Scholar] [CrossRef]
- Kitagawa, I.; Kobayashi, M.; Lee, N.K.; Shibuya, H.; Kawata, Y.; Sakiyama, F. Structure of theonellapeptolide id, a new bioactive peptolide from an okikawan marine sponge, theonella sp. (theonelliae). Chem. Pharm. Bull. 1986, 34, 2664. [Google Scholar] [CrossRef]
- Roy, M.C.; Ohtani, I.I.; Ichiba, T.; Tanaka, J.; Satari, R.; Higa, T. New Cyclic Peptides from the Indonesian Sponge Theonella swinhoei. Tetrahedron 2000, 56, 9079. [Google Scholar] [CrossRef]
- Kuranaga, T.; Enomoto, A.; Tan, H.; Fujita, K.; Wakimoto, T. Total Synthesis of Theonellapeptolide Id. Org. Lett. 2017, 19, 1366–1369. [Google Scholar] [CrossRef] [PubMed]
- Morita, H.; Kayashita, T.; Shishido, A.; Takeya, K.; Itokawa, H.; Shiro, M. Dichotomins A–E, new cyclic peptides from Stellaria dichotoma L. var. lanceolata Bge. Tetrahedron 1996, 52, 1165. [Google Scholar] [CrossRef]
- Zhang, L.; Tam, J.P. Lactone and lactam library synthesis by silver ion-assisted orthogonal cyclization of unprotected peptides. J. Am. Chem. Soc. 1999, 121, 3311. [Google Scholar] [CrossRef]
- Le, D.N.; Riedel, J.; Kozlyuk, N.; Martin, R.W.; Dong, V.M. Cyclizing Pentapeptides: Mechanism and Application of Dehydrophenylalanine as a Traceless Turn-Inducer. Org. Lett. 2017, 19, 114–117. [Google Scholar] [CrossRef]
- Mao, Z.-Y.; Si, C.-M.; Liu, Y.-W.; Dong, H.-Q.; Wei, B.-G.; Lin, G.-Q. Divergent Synthesis of Revised Apratoxin E, 30-epi-Apratoxin E, and 30S/30R-Oxoapratoxin E. J. Org. Chem. 2017, 82, 10830–10845. [Google Scholar] [CrossRef]
- Luesch, H.; Yoshida, W.Y.; Moore, R.E.; Paul, V.J. New apratoxins of marine cyanobacterial origin from guam and palau. Bioorganic Med. Chem. 2002, 10, 1973–1978. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, G.; Yin, R.; Li, Y. Research progress of apratoxin A: A marine cyclic-depsipeptide with significant anticancer activity. Youji Huaxue 2014, 34, 475. [Google Scholar] [CrossRef]
- Demay, J.; Bernard, C.; Reinhardt, A.; Marie, B. Natural Products from Cyanobacteria: Focus on Beneficial Activities. Mar. Drugs 2019, 17, 320. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Menakha, M. Pharmaceutical applications of cyanobacteria—A review. J. Acute Med. 2015, 5, 15–23. [Google Scholar] [CrossRef]
- Zhan, K.X.; Jiao, W.H.; Yang, F.; Li, J.; Wang, S.P.; Li, Y.-S.; Han, B.N.; Lin, H.W. Reniochalistatins A–E, Cyclic Peptides from the Marine Sponge Reniochalina stalagmitis. J. Nat. Prod. 2014, 77, 2678–2684. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.K.; Choi, J.; Moon, E.; Baek, K.-H. Tryptophan-Rich and Proline-Rich Antimicrobial Peptides. Molecules 2018, 23, 815. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine Natural Products. Nat. Prod. Rep. 2012, 29, 144–222. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.-Y.; Dahiya, R.; Qin, H.-L.; Mourya, R.; Maharaj, S. Natural Proline-Rich Cyclopolypeptides from Marine Organisms: Chemistry, Synthetic Methodologies and Biological Status. Mar. Drugs 2016, 14, 194. [Google Scholar] [CrossRef]
- Fatino, A.; Baca, G.; Weeramange, C.; Rafferty, R.J. Total Synthesis of Reniochalistatin E. J. Nat. Prod. 2017, 80, 3234–3240. [Google Scholar] [CrossRef]
- Li, Y.-L.; Bao, X.-C.; Wang, J.; Li, X.-X.; Wang, S.; Yan, F. Total Synthesis of Cyclic Heptapeptide Euryjanicins E. J. Nat. Comp. 2017, 53, 529–532. [Google Scholar] [CrossRef]
- Dahiya, R. Synthesis of a phenylalanine-rich peptide as potential anthelmintic and cytotoxic agent. Acta Pol. Pharm. Drug Res. 2007, 64, 509. [Google Scholar]
- Aviles, E.; Rodriguez, A.D. Euryjanicins E–G, poly-phenylalanine, and poly-proline cyclic heptapeptides from the Caribbean sponge Prosuberites laughlini. Tetrahedron 2013, 69, 10797–10804. [Google Scholar] [CrossRef]
- Toki, S.; Agatsuma, T.; Ochiai, K.; Saitoh, Y.; Ando, K.; Nakanishi, S.; Lokker, N.A.; Giese, N.A.; Matsuda, Y. Isolation and Structure of Cyclic Peptides. J. Antibiot. 2001, 54, 405–414. [Google Scholar] [CrossRef]
- Pohle, S.; Appelt, C.; Roux, M.; Fiedler, H.P.; Sessmuth, R.D. Biosynthetic Gene Cluster of the Non-ribosomally Synthesized Cyclodepsipeptide Skyllamycin: Deciphering Unprecedented Ways of Unusual Hydroxylation Reactions. J. Am. Chem. Soc. 2011, 133, 6194–6205. [Google Scholar] [CrossRef]
- Giltrap, A.M.; Haeckl, F.P.J.; Kurita, K.L.; Linington, R.G.; Payne, R.J. Total Synthesis of Skyllamycins A–C. Chem. Eur. J. 2017, 23, 15046–15049. [Google Scholar] [CrossRef] [PubMed]
- Chorus, I.; Bartram, J. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; F & FN Spon: London, UK, 1999. [Google Scholar]
- Qu, M.; Lefebvre, D.D.; Wang, Y.; Qu, Y.; Zhu, D.; Ren, W. Algal blooms: Proactive strategy. Science 2014, 346, 175–176. [Google Scholar] [CrossRef] [PubMed]
- Zemskov, I.; Kropp, H.M.; Wittmann, V. New Regioselective Cleavage of Thioether Linkages in Microcystin Conjugates. Chem. Eur. J. 2016, 22, 10990–10997. [Google Scholar] [CrossRef] [PubMed]
- Zemskov, I.; Altaner, S.; Dietrich, D.R.; Wittmann, V. Total Synthesis of Microcystin-LF and Derivatives Thereof. J. Org. Chem. 2017, 82, 3680–3691. [Google Scholar] [CrossRef]
- Zhang, H.J.; Yi, Y.H.; Yang, G.J.; Hu, M.Y.; Cao, G.D.; Yang, F.; Lin, H.-W. Proline-Containing Cyclopeptides from the Marine Sponge Phakellia fusca. J. Nat. Prod. 2010, 73, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Meli, A.; Tedesco, C.; Della Sala, G.; Schettini, R.; Albericio, F.; De Riccardis, F.; Izzo, I. Phakellistatins: An Underwater Unsolved Puzzle. Mar. Drugs 2017, 3, 78. [Google Scholar] [CrossRef]
- Wu, M.-H.; Li, Y.-L.; Chang, Q.; Zhao, X.; Chen, Q. Total Synthesis and Modification of Proline-Rich Cyclopeptides Phakellistatins 17 and 18 Isolated from Marine Sponge. Tetrahedron Lett. 2018, 59, 4011–4014. [Google Scholar] [CrossRef]
- Nunnery, J.K.; Mevers, E.; Gerwick, W.H. Biologically active secondary metabolites from marine cyanobacteria. Curr. Opin. Biotechnol. 2010, 21, 787–793. [Google Scholar] [CrossRef]
- Luo, S.; Krunic, A.; Kang, H.-S.; Chen, W.-L.; Woodard, J.L.; Fuchs, J.R.; Swanson, S.M.; Orjala, J. Trichormamides A and B with Antiproliferative Activity from the Cultured Freshwater Cyanobacterium Trichormus sp. UIC 10339. J. Nat. Prod. 2014, 77, 1871–1880. [Google Scholar] [CrossRef]
- Luo, S.; Kang, H.-S.; Krunic, A.; Chen, W.-L.; Yang, J.; Woodard, J.L.; Fuchs, J.R.; Cho, S.H.; Franzblau, S.G.; Swanson, S.M.; et al. Trichormamides C and D, antiproliferative cyclic lipopeptides from the cultured freshwater cyanobacterium cf. Oscillatoria sp. UIC 10045. Bioorganic Med. Chem. 2015, 23, 3153–3162. [Google Scholar] [CrossRef]
- Gaillard, M.; Das, S.; Djibo, M.; Raviglione, D.; Roumestand, C.; Legrand, B.; Inguimbert, N. Towards the Total Synthesis of Trichormamide A, a Cyclic Undecapeptide. Tetrahedron Lett. 2018, 59, 3713–3718. [Google Scholar] [CrossRef]
- Li, Y.; Chang, Q.; Wu, M.-H.; Zhao, X. Total Synthesis of Five Proline-Enriched Cyclic Heptapeptides from the Marine Sponge Stylissa carteri. Tetrahedron Lett. 2018, 59, 1828–1831. [Google Scholar] [CrossRef]
- Afifi, A.H.; El-Desoky, A.H.; Kato, H. Carteritins A and B, cyclic heptapeptides from the marine sponge Stylissa carteri. Tetrahedron Lett. 2016, 57, 1285–1288. [Google Scholar] [CrossRef]
- Li, W.L.; Yi, Y.H.; Wu, H.M.; Xu, Q.-Z.; Tang, H.-F.; Zhou, D.-Z.; Lin, H.-W.; Wang, Z.-H. Isolation and Structure of the Cytotoxic Cycloheptapeptide Phakellistatin 13. J. Nat. Prod. 2003, 66, 146–150. [Google Scholar] [CrossRef]
- Kobayashi, J.; Tsuda, M.; Nakamura, T.; Mikami, Y.; Shigemori, H. Hymenamides A and B, new proline-rich cyclic heptapeptides from the Okinawan marine sponge Hymeniacidon sp. Tetrahedron 1993, 49, 2391–2402. [Google Scholar] [CrossRef]
- Ojima, D.; Mine, H.; Iwasaki, A.; Suenaga, K. Total Synthesis of Janadolide. Tetrahedron Lett. 2018, 59, 1360–1362. [Google Scholar] [CrossRef]
- Ogawa, H.; Iwasaki, A.; Sumimoto, S.; Kanamori, Y.; Ohno, O.; Iwatsuki, M.; Ishiyama, A.; Hokari, R.; Otoguro, K.; Ōmura, S.; et al. Janadolide, a cyclic polyketide–peptide hybrid possessing a tert-butyl group from an okeania SP.. Marine Cyanobacterium. J. Nat. Prod. 2016, 79, 1862–1866. [Google Scholar] [CrossRef]
- Hotez, P.J.; Molyneux, D.H.; Fenwick, A.; Kumaresan, J.; Sachs, S.E.; Sachs, J.D.; Savioli, L. Neglected Tropical Diseases in the United States. N. Engl. J. Med. 2007, 357, 1018–1027. [Google Scholar] [CrossRef]
- Ma, J.; Huang, H.; Xie, Y.; Liu, Z.; Zhao, J.; Zhang, C.; Jia, Y.; Zhang, Y.; Zhang, H.; Zhang, T.; et al. Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents. Nat. Commun. 2017, 8, 391. [Google Scholar] [CrossRef]
- Liao, L.; Zhou, J.; Xu, Z.; Ye, T. Concise Total Synthesis of Nannocystin A. Angew. Chem. Int. Ed. 2016, 55, 13263–13267. [Google Scholar] [CrossRef]
- Cheng, Y.; Tang, S.; Guo, Y.; Ye, T. Total Synthesis of Anti-Tuberculosis Natural Products Ilamycins E1 and F. Org. Lett. 2018, 20, 6166–6169. [Google Scholar] [CrossRef] [PubMed]
- Goetz, M.A.; Schwartz, C.D.; Koupal, L.R.; Liesch, J.M.; Hensens, O.D.; Freidinger, R.; Anderson, P.S.; Pettibone, D.J.; Woodruff, B.H. Oxytocin and vasopressin antagonists. Patent 0256847, 24 February 1988. [Google Scholar]
- Bock, M.G.; DiPardo, R.M.; Williams, P.D.; Tung, R.D.; Erb, J.M.; Gould, N.P.; Whitter, W.L.; Perlow, D.S.; Lundell, G.F.; Ball, R.G.; et al. Chemical Aspects of Enzyme Biotechnology: Fundamentals. In Chemical Aspects of Enzyme Biotechnology: Fundamentals; Baldwin, T.O., Raushel, F.M., Scott, A.I., Eds.; Springer: Boston, MA, USA, 1990; pp. 123–134. [Google Scholar]
- Elbatrawi, Y.M.; Kang, C.W.; Del Valle, J.R. Total Synthesis of L-156,373 and an OxoPiz Analogue via a Submonomer Approach. Org. Lett. 2018, 20, 2707–2710. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; De Leon Rodriguez, L.M.; Huang, R.; Leung, I.K.H.; Harris, P.W.R.; Brimble, M.A. Total Synthesis of the Proposed Structure of Talarolide A. Org. Biomol. Chem. 2018, 16, 5286–5293. [Google Scholar] [CrossRef] [PubMed]
- Salim, A.A.; Hussein, W.M.; Dewapriya, P.; Hoang, H.N.; Zhou, Y.; Samarasekera, K.; Khalil, Z.G.; Fairlie, D.P.; Capon, R.J. Talarolides Revisited: Cyclic Heptapeptides from an Australian Marine Tunicate-Associated Fungus, Talaromyces sp. CMB-TU011. Mar. Drugs 2023, 21, 487. [Google Scholar] [CrossRef]
- Dewapriya, P.; Prasad, P.; Damodar, R.; Salim, A.A.; Capon, R.J. Talarolide A, a Cyclic Heptapeptide Hydroxamate from an Australian Marine Tunicate-Associated Fungus, Talaromyces sp. (CMB-TU011). Org. Lett. 2017, 19, 2046–2049. [Google Scholar] [CrossRef]
- Singh, S.B.; Odingo, J.; Bailey, M.A.; Sunde, B.; Korkegian, A.; O’Malley, T.; Ovechkina, Y.; Ioerger, T.R.; Sacchettini, J.C.; Young, K.; et al. Identification of cyclic hexapeptides natural products with inhibitory potency against mycobacterium tuberculosis. BMC Res. Notes 2018, 11, 416. [Google Scholar] [CrossRef]
- Paatero, A.O.; Kellosalo, J.; Dunyak, B.M.; Almaliti, J.; Gestwicki, J.E.; Gerwick, W.H.; Taunton, J.; Paavilainen, V.O. Apratoxin Kills Cells by Direct Blockade of the Sec61 Protein Translocation Channel. Cell Chem Biol. 2016, 19, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Flores-Holguín, N.; Frau, J.; Glossman-Mitnik, D. Virtual Prospection of Marine Cyclopeptides as Therapeutics by Means of Conceptual DFT and Computational ADMET. Pharmaceuticals 2022, 15, 509. [Google Scholar] [CrossRef]
- Doi, T.; Masuda, Y.; Yoshida, M. Cyclodepsipeptide Natural Products Apratoxins A and C and Their Analogs. J. Synth. Org. Chem. Jpn. 2018, 76, 1170–1175. [Google Scholar] [CrossRef]
- Itazaki, H.; Nagashima, K.; Sugita, K.; Yoshida, H.; Kawamura, Y.; Yasuda, Y.; Matsumoto, K.; Ishii, K.; Uotani, N.; Nakai, H.; et al. Isolation and structural elucidation of new cyclotetrapeptides, trapoxins A and B, having detransformation activities as antitumor agents. J. Antibiot. 1990, 43, 1524–1532. [Google Scholar] [CrossRef]
- Servatius, P.; Kazmaier, U. Total Synthesis of Trapoxin A, a Fungal HDAC Inhibitor from Helicoma ambiens. J. Org. Chem. 2018, 83, 11341–11349. [Google Scholar] [CrossRef] [PubMed]
- Byeon, H.; Park, B.; Yim, J.H.; Lee, H.K.; Moon, E.; Rhee, D.; Pyo, S. Corrigendum to “Stereocalpin A inhibits the expression of adhesion molecules in activated vascular smooth muscle cells” [Int. Immunopharmacol. 12 (2012) 315–325]. Int. Immunopharmacol. 2012, 66, 389. [Google Scholar] [CrossRef] [PubMed]
- Seo, C.; Yim, J.H.; Lee, H.K.; Park, S.M.; Sohn, J.; Oh, H. Stereocalpin A, a bioactive cyclic depsipeptide from the Antarctic lichen Stereocaulon alpinum. Tetrahedron Lett. 2008, 49, 29–31. [Google Scholar] [CrossRef]
- Marfey, P. Determination of the Stereochemistry of Amino Acids in Peptides. Carlsberg Res. Commun. 1984, 49, 591–596. [Google Scholar] [CrossRef]
- Kaneda, M.; Inuki, S.; Ohno, H.; Oishi, S. Total Synthesis and Stereochemical Revision of Stereocalpin A: Mirror-Image Approach for Stereochemical Assignments of the Peptide-Polyketide Macrocycle. J. Org. Chem. 2018, 83, 3047–3060. [Google Scholar] [CrossRef]
- Junk, L.; Kazmaier, U. Total Synthesis of Keramamides A and L from a Common Precursor by Late-Stage Indole Synthesis and Configurational Revision. Angew. Chem. Int. Ed. Engl. 2018, 57, 11432–11435. [Google Scholar] [CrossRef]
- Kobayashi, J.; Sato, M.; Ishibashi, M.; Shigemori, H.; Nakamura, T.; Ohizumi, Y. Keramamide A, a novel peptide from the Okinawan marine sponge Theonella sp. J. Chem. Soc. Perkin Trans. 1 1991, 10, 2609–2611. [Google Scholar] [CrossRef]
- Uemoto, H.; Yahiro, Y.; Shigemori, H.; Tsuda, M.; Takao, T.; Shimonishi, Y.; Kobayashi, J. Keramamides K and L, new cyclic peptides containing unusual tryptophan residue from Theonella sponge. Tetrahedron 1998, 54, 6719–6724. [Google Scholar] [CrossRef]
- Hur, J.; Jang, J.; Sim, J.; Son, W.S.; Ahn, H.; Kim, T.S.; Shin, Y.; Lim, C.; Lee, S.; An, H.; et al. Conformation-Enabled Total Syntheses of Ohmyungsamycins A and B and Structural Revision of Ohmyungsamycin B. Angew. Chem. Int. Ed. Engl. 2018, 57, 3069–3073. [Google Scholar] [CrossRef]
- Um, S.; Choi, T.J.; Kim, H.; Kim, B.Y.; Kim, S.H.; Lee, S.K.; Oh, K.B.; Shin, J.; Oh, D.C. Ohmyungsamycins A and B: Cytotoxic and Antimicrobial Cyclic Peptides Produced by Streptomyces sp. from a Volcanic Island. J. Org. Chem. 2013, 78, 12321–12328. [Google Scholar] [CrossRef]
- Chen, D.; Chow, H.Y.; Po, K.H.L.; Ma, W.; Leung, E.L.Y.; Sun, Z.; Liu, M.; Chen, S.; Li, X. Total Synthesis and Structural Establishment/Revision of Antibiotics A54145. Org. Lett. 2019, 21, 5639–5644. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, D.S.; Bus, R.H.D.; Baker, P.J.; Berry, D.M.; Mynderse, J.S. A54145, a New Lipopeptide Antibiotic Complex. Isolation and Characterization. J. Antibiot. 1990, 43, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhou, J.; Gao, B.; Zhao, M.; Yan, J.-L.; Xu, Z.; Choi, S.; Ye, T. Total Synthesis of Hoiamide A Using an Evans−Tishchenko Reaction as a Key Step. Org. Lett. 2019, 21, 5471–5474. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; Cao, Z.; Murray, T.F.; Gerwick, W.H. Hoiamide A, a Sodium Channel Activator of Unusual Architecture from a Consortium of Two Papua New Guinea Cyanobacteria. Chem. Biol. 2009, 16, 893–906. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Pereira, A.R.; Cao, Z.; Shuman, C.F.; Engene, N.; Byrum, T.; Matainaho, T.; Murray, T.F.; Mangoni, A.; Gerwick, W.H. The Hoiamides, Structurally Intriguing Neurotoxic Lipopeptides from Papua New Guinea Marine Cyanobacteria. J. Nat. Prod. 2010, 73, 1411–1421. [Google Scholar] [CrossRef]
- Cao, Z.; Li, X.; Zou, X.; Greenwood, M.; Gerwick, W.H.; Murray, T.F. Involvement of JNK and Caspase Activation in Hoiamide A-Induced Neurotoxicity in Neocortical Neurons. Mar. Drugs 2015, 13, 903–922. [Google Scholar] [CrossRef]
- Faulstich, H.; Buku, A.; Bodenmüller, H.; Wieland, T. Biochemical Pathways in the Synthesis of Natural ProductVirotoxins: Actin-binding cyclic peptides of Amanita virosa mushrooms. Biochemistry 1980, 19, 3334–3343. [Google Scholar] [CrossRef]
- Gicquaud, C.; Pare, M. Virotoxins polymerize actin and induce membrane fragmentation in cytoplasmic preparations of Amoeba proteus. Biochem. Cell Biol. 1992, 70, 719–723. [Google Scholar] [CrossRef]
- Taylor, C.M.; Kutty, S.K.; Edagwa, B.J. Total Synthesis of Alloviroidin. Org. Lett. 2019, 21, 2281–2284. [Google Scholar] [CrossRef]
- Ueda, J.-Y.; Nagai, A.; Izumikawa, M.; Chijiwa, S.; Takagi, M.; Shin-Ya, K. A Novel Antimycin-like Compound, JBIR-06, from Streptomyces sp. ML55. J. Antibiot. 2008, 61, 241–244. [Google Scholar] [CrossRef]
- Li, X.; Zvanych, R.; Torchia, J.; Magarvey, N.A. Structures and biosynthesis of 12-membered macrocyclic depsipeptides from Streptomyces sp. ML55. Bioorganic Med. Chem. Lett. 2013, 23, 4150–4153. [Google Scholar] [CrossRef] [PubMed]
- Hamada, C.; Usuki, Y.; Takeuchi, D.; Ogawa, H.; Abe, R.; Satoh, T. Total Syntheses and Configuration Assignments of JBIR-06 and Related Depsipeptides. Org. Lett. 2019, 21, 965–968. [Google Scholar] [CrossRef] [PubMed]
- Skinnider, M.A.; Johnston, C.W.; Edgar, R.E.; Dejong, C.A.; Merwin, N.J.; Rees, P.N.; Magarvey, N.A. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining. Proc. Natl. Acad. Sci. USA 2016, 113, E6343–E6351. [Google Scholar] [CrossRef] [PubMed]
- Kaweewan, I.; Komaki, H.; Hemmi, H.; Hoshino, K.; Hosaka, T.; Isokawa, G.; Oyoshi, T.; Kodani, S. Isolation and structure determination of a new cytotoxic peptide, curacozole, from Streptomyces curacoi based on genome mining. J. Antibiot. 2019, 72, 1–7. [Google Scholar] [CrossRef]
- Oberheide, A.; Pflanze, S.; Stallforth, P.; Arndt, H.-D. Solid-Phase-Based Total Synthesis and Stereochemical Assignment of the Cryptic Natural Product Aurantizolicin. Org. Lett. 2019, 21, 729–732. [Google Scholar] [CrossRef]
- Ohsawa, K.; Sugai, M.; Zhang, L.; Masuda, Y.; Yoshida, M.; Doi, T. Total Synthesis and Structural Revision of Cyclotetrapeptide Asperterrestide A. J. Org. Chem. 2019, 84, 6765–6779. [Google Scholar] [CrossRef]
- Walsh, C.T.; O’Brien, R.V.; Khosla, C. Nonproteinogenic Amino Acid Building Blocks for Nonribosomal Peptide and Hybrid Polyketide Scaffolds. Angew. Chem. Int. Ed. 2013, 52, 7098–7124. [Google Scholar] [CrossRef]
- Schmidt, E.W.; Harper, M.K.; Faulkner, D. Mozamides A and B, Cyclic Peptides from a Theonellid Sponge from Mozambique. J. Nat. Prod. 1997, 60, 779–782. [Google Scholar] [CrossRef]
- Junk, L.; Kazmaier, U. Total Synthesis and Configurational Revision of Mozamide A, a Hydroxy-Brunsvicamide. J. Org. Chem. 2019, 84, 2489–2500. [Google Scholar] [CrossRef]
- Fukuda, T.; Nagai, K.; Yagi, A.; Kobayashi, K.; Uchida, R.; Yasuhara, T.; Tomoda, H. Nectriatide, a Potentiator of Amphotericin B Activity from Nectriaceae sp. BF-0114. J. Nat. Prod. 2019, 82, 2673–2681. [Google Scholar] [CrossRef]
- Matsuda, K.; Kuranaga, T.; Sano, A.; Ninomiya, A.; Takada, K.; Wakimoto, T. The Revised Structure of the Cyclic Octapeptide Surugamide A. Chem. Pharm. Bull. 2019, 67, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Takada, K.; Ninomiya, A.; Naruse, M.; Sun, Y.; Miyazaki, M.; Nogi, Y.; Okada, S.; Matsunaga, S. Surugamides A–E, Cyclic Octapeptides with Four d-Amino Acid Residues, from a Marine Streptomyces sp.: LC–MS-Aided Inspection of Partial Hydrolysates for the Distinction of d-and l-Amino Acid Residues in the Sequence. J. Org. Chem. 2013, 78, 6746–6750. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.W.; McCarville, N.G.; MacIntyre, L.W.; Correa, H.; Haltli, B.; Marchbank, D.H.; Kerr, R.G. Isolation of imaqobactin, an amphiphilic siderophore from the Arctic Marine Bacterium Variovorax Species RKJM285. J. Nat. Prod. 2018, 81, 858–863. [Google Scholar] [CrossRef]
- Grunwald, A.L.; Berrue, F.; Robertson, A.W.; Overy, D.P.; Kerr, R.G. Mortiamides A–D, Cyclic Heptapeptides from a Novel Mortierella sp. Obtained from Frobisher Bay. J. Nat. Prod. 2017, 80, 2677–2683. [Google Scholar] [CrossRef] [PubMed]
- Bérubé, C.; Gagnon, D.; Borgia, A.; Richard, D.; Voyer, N. Total Synthesis and Antimalarial Activity of Mortiamides A–D. Chem. Commun. 2019, 55, 7434–7437. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.-Y.S.; Kuramoto, M.; Yamada, K.; Yazawa, K.; Uemura, D. Homocereulide, an Extremely Potent Cytotoxic Depsipeptide from the Marine Bacterium Bacillus cereus. Chem. Lett. 1995, 24, 791–792. [Google Scholar] [CrossRef]
- Shinagawa, K.; Konuma, H.; Sekita, H.; Sugii, S. Emesis of Rhesus Monkeys Induced by Intragastric Administration with the HEp-2 Vacuolation Factor (Cereulide) Produced by Bacillus cereus. FEMS Microbiol. Lett. 1995, 130, 87–90. [Google Scholar] [CrossRef]
- Nakaa, T.; Hattorib, Y.; Takenakab, H.; Ohtab, Y.; Kirihatab, M.; Tanimoric, S. Synthesis of the Reported Structure of Homocereulide and Its Vacuolation Assay. Bioorganic Med. Chem. Lett. 2019, 29, 734–739. [Google Scholar] [CrossRef]
- Lakey, J.H.; Lea, E.J.A.; Rudd, B.A.M.; Wright, H.M.; Hopwood, D.A. A New Channel-forming Antibiotic from Streptomyces coelicolor A3(2) Which Requires Calcium for its Activity. Microbiology 1983, 129, 3565–3573. [Google Scholar] [CrossRef]
- Kempter, C.; Kaiser, D.; Haag, S.; Nicholson, G.; Gnau, V.; Walk, T.; Gierling, K.H.; Decker, H.; Zahner, H.; Jung, G.; et al. CDA: Calcium-Dependent Peptide Antibiotics from Streptomyces coelicolor A3(2) Containing Unusual Residues. Angew. Chem. Int. Ed. Engl. 1997, 36, 498–501. [Google Scholar] [CrossRef]
- Chen, D.; Laam Po, K.H.; Blasco, P.; Chen, S.; Li, X. Convergent Synthesis of Calcium-Dependent Antibiotic CDA3a and Analogues with Improved Antibacterial Activity via Late-Stage Serine Ligation. Org. Lett. 2020, 22, 4749–4753. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.E.; Patrick, B.O.; Behrisch, H.W.; van soest, R.; Roberge, M.; Andersen, R.J. Dominicin, a cyclic octapeptide, and laughine, a bromopyrrole alkaloid, isolated from the Caribbean marine sponge Eurypon laughlini. J. Nat. Prod. 2005, 68, 327–330. [Google Scholar] [CrossRef] [PubMed]
- Bérubé, C.; Borgia, A.; Gagnon, D.; Mukherjee, A.; Richard, D.; Voyer, N. Total Synthesis and Antimalarial Activity of Dominicin, a Cyclic Octapeptide from a Marine Sponge. J. Nat. Prod. 2020, 83, 1778–1783. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, L.; Ratnayake, R.; Luesch, H.; Guo, Y.; Ye, T. Nine-Step Total Synthesis and Biological Evaluation of Rhizonin A. Chin. J. Chem. 2020, 38, 1280–1284. [Google Scholar] [CrossRef]
- Kang, S.M.; Khan, A.L.; Hussain, J.; Ali, L.; Kamran, M.; Waqas, M.; Lee, I.J. Rhizonin A from Burkholderia sp. KCTC11096 and Its Growth Promoting Role in Lettuce Seed Germination. Molecules 2012, 17, 7980–7988. [Google Scholar] [CrossRef]
- Wilson, T.; Rabie, C.J.; Fincham, J.E.; Steyn, P.S.; Schipper, M.A.A. Toxicity of Rhizonin A, Isolated from Rhizopus microsporus, in Laboratory Animals. Food Chem. Toxicol. 1984, 22, 275–281. [Google Scholar] [CrossRef]
- Krahn, D.; Heilmann, G.; Vogel, F.C.E.; Papadopoulos, C.; Zweerink, S.; Kaschani, F.; Meyer, H.; Roesch, A.; Kaiser, M. Zelkovamycin is an OXPHOS Inhibitory Member of the Argyrin Natural Product Family. Chem. Eur. J. 2020, 26, 8524–8531. [Google Scholar] [CrossRef]
- Zhang, H.; Tomoda, H.; Tabata, N.; Oohori, M.; Shinose, M.; Takahashi, Y.; Omura, S. Zelkovamycin, a New Cyclic Peptide Antibiotic from Streptomyces sp. K96-0670. I. Production, Isolation and Biological Properties. J. Antibiot. 1999, 52, 29–33. [Google Scholar] [CrossRef]
- Tabata, N.; Tomoda, H.; Zhang, H.; Uchida, R.; Omura, S. Zelkovamycin, a New Cyclic Peptide Antibiotic from Streptomyces sp. K96-0670. II. Structure Elucidation. J. Antibiot. 1999, 52, 34–39. [Google Scholar] [CrossRef]
- Schummer, D.; Forche, E.; Wray, V.; Domke, T.; Reichenbach, H.; Höfle, G. Antibiotics from Gliding Bacteria, LXXVI. Vioprolides: New Antifungal and Cytotoxic Peptolides from Cystobacter violaceus. Liebigs Ann. 1996, 1996, 971–978. [Google Scholar] [CrossRef]
- Grab, H.A.; Kirsch, V.C.; Sieber, S.A.; Bach, T. Total Synthesis of the Cyclic Depsipeptide Vioprolide D via its (Z)-Diastereoisomer. Angew. Chem. Int. Ed. Engl. 2020, 59, 12357–12361. [Google Scholar] [CrossRef] [PubMed]
- Sy-Cordero, A.A.; Pearce, C.J.; Oberlies, N.H. Revisiting the Enniatins: A Review of Their Isolation, Biosynthesis, Structure Determination, and Biological Activities. J. Antibiot. 2012, 65, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Dornetshuber, R.; Heffeter, P.; Kamyar, M.R.; Peterbauer, T.; Berger, W.; Lemmens-Gruber, R. Enniatin Exerts p53-Dependent Cytostatic and p53-Independent Cytotoxic Activities Against Human Cancer Cells. Chem. Res. Toxicol. 2007, 20, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Hiraga, K.; Yamamoto, S.; Fukuda, H.; Hamanaka, N.; Oda, K. Enniatin Has a New Function as an Inhibitor of Pdr5p, One of the ABC Transporters in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 2005, 328, 1119–1125. [Google Scholar] [CrossRef]
- Golin, J.; Ambudkar, S.V. The Mulitdrug Transporter Pdr5 on the 25th Anniversary of its Discovery: An Important Model for the Study of Assymmetic ABC Transporters. J. Biochem. 2015, 467, 353–363. [Google Scholar] [CrossRef]
- Serwetnyk, M.A.; Crowley, V.M.; Brackett, C.M.; Carter, T.R.; Elahi, A.; Kommalapati, V.K.; Chadli, A.; Blagg, B.S.J. Enniatin A Analogues as Novel Hsp90 Inhibitors that Modulate Triple-Negative Breast Cancer. ACS Med. Chem. Lett. 2023, 14, 1785–1790. [Google Scholar] [CrossRef]
- Eisa, N.H.; Crowley, V.M.; Elahi, A.; Kommalapati, V.K.; Serwetnyk, M.A.; Llbiyi, T.; Lu, S.; Kainth, K.; Jilani, Y.; Marasco, D.; et al. Enniatin A inhibits the chaperone Hsp90 and unleashes the immune system against triple-negative breast cancer. iScience 2023, 26, 108308. [Google Scholar] [CrossRef]
- Hu, D.X.; Bielitza, M.; Koos, P.; Ley, S.V. A Total Synthesis of the Ammonium Ionophore, (−)-Enniatin B. Tetrahedron Lett. 2012, 53, 4077–4079. [Google Scholar] [CrossRef]
- Nakahara, H.; Sennari, G.; Azami, H.; Tsutsumi, H.; Noguchi, Y.; Watanabe, Y.; Inahashi, Y.; Iwatsuki, M.; Hirose, Y.; Sunazuka, T. Isolation, Total Synthesis and the Structure Determination of the Antifungal Macrocyclic Depsipeptide, Tetraselide. ChemRxiv 2024. [CrossRef]
- Metrano, A.J.; Chinn, A.J.; Shugrue, C.R.; Stone, E.A.; Kim, B.; Miller, S.J. Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms. Chem. Rev. 2020, 120, 11479–11615. [Google Scholar] [CrossRef]
- Ambroggio, E.E.; Caruso, B.; Villarreal, M.A.; Raussens, V.; Fidelio, G.D. Reversing the peptide sequence impacts on molecular surface behaviour. Colloids Surf. B 2016, 139, 25. [Google Scholar] [CrossRef] [PubMed]
- Agus, H.N.; Maharani, R.; Hidayat, A.T.; Wiani, I.; Zainuddin, A.; Mayanti, T.; Nurlelasari; Harneti, D.; Supratman, U. Total Synthesis of a Reversed Cyclopurpuracin Using a Combination of Solid and Solution Phase Methods. J. Heterocycl. Chem. 2022, 59, 1963–1970. [Google Scholar]
- Shimura, S.; Ishima, M.; Nakajima, S.; Fujii, T.; Himeno, N.; Ikeda, K.; Izaguirre-Carbonell, J.; Murata, H.; Takeuchi, T.; Kamisuki, S.; et al. Total Synthesis and Anti-Hepatitis C Virus Activity of MA026. J. Am. Chem. Soc. 2013, 135, 18949–18956. [Google Scholar] [CrossRef] [PubMed]
- Kanda, Y.; Yamasaki, Y.; Shimura, S.; Kamisuki, S.; Sugawara, F.; Nagumo, Y.; Usui, T. MA026, an anti-hepatitis C virus compound, opens tight junctions of the epithelial cell membrane. J. Antibiot. 2017, 70, 691–694. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, C.; Fukuda, A.; Mukaiyama, M.; Nakazawa, Y.; Kuramochi, Y.; Muguruma, K.; Arimoto, M.; Ninomiya, A.; Kako, K.; Katsuyama, Y.; et al. Structural Revision of Natural Cyclic Depsipeptide MA026 Established by Total Synthesis and Biosynthetic Gene Cluster Analysis. Angew. Chem. Int. Ed. Engl. 2021, 60, 8792–8797. [Google Scholar] [CrossRef]
- De Voe, S.E.; Kunstmann, M.P. Antibiotic AC98 and Production. U. S. Patent 3495004, 10 February 1970. [Google Scholar]
- Singh, M.P.; Petersen, P.J.; Weiss, W.J.; Janso, J.E.; Luckman, S.W.; Lenoy, E.B.; Bradford, P.A.; Testa, R.T.; Greenstein, M. Mannopeptimycins, New Cyclic Glycopeptide Antibiotics Produced by Streptomyces hygroscopicus LL-AC98: Antibacterial and Mechanistic Activities. Antimicrob. Agents Chemother. 2003, 47, 62–69. [Google Scholar] [CrossRef]
- He, H.; Williamson, R.T.; Shen, B.; Graziani, E.I.; Yang, H.Y.; Sakya, S.M.; Petersen, P.J.; Carter, G.T. Mannopeptimycins, Novel Antibacterial Glycopeptides from Streptomyces hygroscopicus, LL-AC98. J. Am. Chem. Soc. 2002, 124, 9729–9736. [Google Scholar] [CrossRef]
- Wang, J.; Lin, D.; Liu, M.; Liu, H.; Blasco, P.; Sun, Z.; Cheung, Y.C.; Chen, S.; Li, X. Total Synthesis of Mannopeptimycin β via β-Hydroxyenduracididine Ligation. J. Am. Chem. Soc. 2021, 143, 12784–12790. [Google Scholar] [CrossRef]
- Gross, H.; Stockwell, V.O.; Henkels, M.D.; Nowak-Thompson, B.; Loper, J.E.; Gerwick, W.H. The genomisotopic approach: A systematic method to isolate products of orphan biosynthetic gene clusters. Chem. Biol. 2007, 14, 53–63. [Google Scholar] [CrossRef]
- Ma, N.; Geudens, N.; Kieu, D.; Sinnaeve, M.; Ongena, M.; Martins, J.C.; Höfte, M. Biosynthesis, Chemical Structure, and Structure-Activity Relationship of Orfamide Lipopeptides Produced by Pseudomonas protegens and Related Species. Front. Microbiol. 2016, 7, 382. [Google Scholar] [CrossRef]
- Jang, Y.; Yang, S.Y.; Kim, Y.C.; Lee, C.W.; Park, M.S.; Kim, J.C.; Kim, I.S. The Antimicrobial and Anti-inflammatory Effects of Phytochemicals. J. Agric. Food Chem. 2013, 61, 6786–6791. [Google Scholar] [CrossRef] [PubMed]
- Loper, E.; Henkels, M.D.; Rangel, L.I.; Olcott, M.H.; Walker, F.L.; Bond, K.L.; Kidarsa, T.A.; Hesse, C.N.; Sneh, B.; Stockwell, V.O.; et al. Rhizoxin analogs, orfamide A and chitinase production contribute to the toxicity of Pseudomonas protegens strain Pf-5 to Drosophila melanogaster. Environ. Microbiol. 2016, 18, 3509–3521. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Ongena, M.; Höfte, M. The cyclic lipopeptide orfamide induces systemic resistance in rice to Cochliobolus miyabeanus but not to Magnaporthe oryzae. Plant Cell Rep. 2017, 36, 1731–1746. [Google Scholar] [CrossRef] [PubMed]
- Aiyar, D.; Schaeme, M.; García-Altares, D.; Carrasco-Flores, H.; Dathe, H.; Hertweck, C.; Sasso, M.; Mittag, S. Antagonistic bacteria disrupt calcium homeostasis and immobilize algal cells. Nat. Commun. 2017, 8, 1756. [Google Scholar] [CrossRef]
- Bando, Y.; Hou, Y.; Seyfarth, L.; Probst, J.; Götze, S.; Bogacz, M.; Hellmich, U.A.; Stallforth, P.; Mittag, M.; Arndt, H.-D. Total Synthesis and Structure Correction of the Cyclic Lipodepsipeptide Orfamide A. Chem. Eur. J. 2022, 28, e202104417. [Google Scholar] [CrossRef]
- Aoyagi, A.; Yano, T.; Kozuma, S.; Takatsu, T. Pleofungins, novel inositol phosphorylceramide synthase inhibitors, from Phoma sp. SANK 13899. J. Antibiot. 2007, 60, 143–152. [Google Scholar] [CrossRef]
- Yano, T.; Aoyagi, A.; Kozuma, S.; Kawamura, Y.; Tanaka, I.; Suzuki, Y.; Takamatsu, Y.; Takatsu, T.; Inukai, M. Pleofungins, Novel Inositol Phosphorylceramide Synthase Inhibitors, from Phoma sp. SANK 13899: I. Taxonomy, Fermentation, Isolation, and Biological Activities. J. Antibiot. 2007, 60, 136–142. [Google Scholar] [CrossRef]
- Kiho, T.; Yokoyama, M.; Kogen, H. Total Synthesis of Pleofugin A, a Potent Inositol Phosphorylceramide Synthase Inhibitor. Org. Lett. 2018, 20, 4637–4640. [Google Scholar] [CrossRef]
- Waisvisz, J.M.; van der Hoeven, M.G.; van Peppen, J.; Zwennis, W.C.M. Bottromycin. I. A New Sulfur-containing Antibiotic. J. Am. Chem. Soc. 1957, 79, 4520–4521. [Google Scholar] [CrossRef]
- Nakamura, S.; Yajima, T.; Lin, Y.; Umezawa, H. Isolation and characterization of bottromycins A2, B2, C2. J. Antibiot. 1967, 20, 1–5. [Google Scholar] [PubMed]
- Yamada, T.; Yagita, M.; Kobayashi, Y.; Sennari, G.; Shimamura, H.; Matsui, H.; Horimatsu, Y.; Hanaki, H.; Hirose, T.; Ōmura, S.; et al. Synthesis and Evaluation of Antibacterial Activity of Bottromycins. J. Org. Chem. 2018, 83, 7135–7149. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.E.; Yasmin, S.O.; Wolfrum, S.; Carreira, E.M. Total Synthesis of Mutanobactins A, B from the Human Microbiome: Macrocyclization and Thiazepanone Assembly in a Single Step. Angew. Chem. Int. Ed. Engl. 2022, 61, e202203051. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-C.; Schneider, F.; Eberle, K.J.; Chiodi, D.; Nakamura, H.; Reisberg, S.H.; Chen, J.; Saito, M.; Baran, P.S. Atroposelective Total Synthesis of Darobactin A. J. Am. Chem. Soc. 2022, 144, 14458–14462. [Google Scholar] [CrossRef] [PubMed]
- Imai, Y.; Meyer, K.J.; Iinishi, A.; Favre-Godal, Q.; Green, R.; Manuse, S.; Caboni, M.; Mori, M.; Niles, S.; Ghiglieri, M.; et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 2019, 576, 459–464. [Google Scholar] [CrossRef]
- Yao, G.; Knittel, C.H.; Kosol, S.; Wenz, M.T.; Keller, B.G.; Grub, H.; Braun, A.C.; Lutz, C.; Hechler, T.; Pahl, A.; et al. Iodine-Mediated Tryptathionine Formation Facilitates the Synthesis of Amanitins. J. Am. Chem. Soc. 2021, 143, 14322–14331. [Google Scholar] [CrossRef]
- Wienland, T.; Faulstich, H. Fifty Years of Amanitin. Experientia 1991, 47, 1186–1193. [Google Scholar] [CrossRef]
- Wieland, T. The Toxic Peptides from Amanita Mushrooms. Int. J. Pept. Protein Res. 1983, 22, 257–276. [Google Scholar] [CrossRef]
- Lindell, T.J.; Weinberg, F.; Morris, P.W.; Roeder, R.G.; Rutter, W.J. Specific Inhibition of Nuclear RNA Polymerase II by Alpha-Amanitin. Science 1970, 170, 447–449. [Google Scholar] [CrossRef]
- Bushnell, D.A.; Cramer, P.; Kornberg, R.D. Structural Basis of Transcription: Alpha-Amanitin-RNA Polymerase II Cocrystal at 2.8 Å Resolution. Proc. Natl. Acad. Sci. USA 2002, 99, 1218–1222. [Google Scholar] [CrossRef]
- Ibrahim, M.; Guillot, A.; Wessner, F.; Algaron, F.; Besset, C.; Courtin, P.; Gardan, R.; Monnet, V. Control of the Transcription of Short Gene Encoding a Cyclic Peptide in Streptococcus thermophilus: A New Quorum-Sensing System? J. Bacteriol. 2007, 189, 8844–8854. [Google Scholar] [CrossRef]
- Isley, N.A.; Endo, Y.; Wu, Z.-C.; Covington, B.C.; Bushin, L.B.; Seyedsayamdost, M.R.; Boger, D.L. Total Synthesis and Stereochemical Assignment of Streptide. J. Am. Chem. Soc. 2019, 141, 17361–17369. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Bian, X.Y.; Hu, S.B.; Wang, H.L.; Huang, F.; Seibert, P.M.; Plaza, A.; Xia, L.Q.; Müller, R.; Stewart, A.F.; et al. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat. Biotechnol. 2012, 30, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.Y.; Plaza, A.; Zhang, Y.M.; Müller, R. Luminmycins A–C, Cryptic Natural Products from Photorhabdus luminescens Identified by Heterologous Expression in Escherichia coli. J. Nat. Prod. 2012, 75, 1652–1655. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.Y.; Huang, F.; Wang, H.L.; Klefisch, T.; Müller, R.; Zhang, Y.M. Heterologous Production of Glidobactins/Luminmycins in Escherichia coli Nissle Containing the Glidobactin Biosynthetic Gene Cluster from Burkholderia DSM7029. ChemBioChem 2014, 15, 2221–2224. [Google Scholar] [CrossRef]
- SeServatius, P.; Stach, T.; Kazmaier, U. Total Synthesis of Luminmycin A, a Cryptic Natural Product from Photorhabdus luminescens. Eur. J. Org. Chem. 2019, 2019, 3163–3168. [Google Scholar] [CrossRef]
- Shabani, S.; Hutton, C.A. Total Synthesis of Seongsanamide B. Org. Lett. 2020, 22, 4557–4561. [Google Scholar] [CrossRef]
- Kishimoto, S.; Tsunematsu, Y.; Nishimura, S.; Hayashi, Y.; Hattori, A.; Kakeya, H. Tumescenamide C, an Antimicrobial Cyclic Lipodepsipeptide from Streptomyces sp. Tetrahedron 2012, 68, 5572–5576. [Google Scholar] [CrossRef]
- Takahashi, N.; Kaneko, K.; Kakeya, H. Total Synthesis and Antimicrobial Activity of Tumescenamide C and Its Derivatives. J. Org. Chem. 2020, 85, 4530–4535. [Google Scholar] [CrossRef]
- Gholap, S.S.; Ugale, S.R. A Total Synthesis of the Cyclic Depsipeptide Chaiyaphumine-A. ChemistrySelect 2017, 2, 7445–7449. [Google Scholar] [CrossRef]
- Pavlaskova, K.; Nedved, J.; Kuzma, M.; Zabka, M.; Sulc, M.; Sklenar, J.; Novak, P.; Benada, O.; Kofronova, O.; Hajduch, M.; et al. Characterization of Pseudacyclins A–E, a Suite of Cyclic Peptides Produced by Pseudallescheria boydii. J. Nat. Prod. 2010, 73, 1027–1032. [Google Scholar] [CrossRef]
- Bérubé, C.; Borgia, A.; Voyer, N. Total Synthesis of Pseudacyclins A–E by an On-Resin Head-to-Side Chain Concomitant Cyclization-Cleavage Reaction. Tetrahedron Lett. 2018, 59, 4176–4179. [Google Scholar] [CrossRef]
- Nagano, N.; Umemura, M.; Izumikawa, M.; Kawano, J.; Ishii, T.; Kikuchi, M.; Tomii, K.; Kumagai, T.; Yoshimi, A.; Machida, M.; et al. Class of Cyclic Ribosomal Peptide Synthetic Genes in Filamentous Fungi. Fungal Genet. Biol. 2016, 86, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Shabani, S.; White, J.M.; Hutton, C.A. Total Synthesis of the Putative Structure of Asperipin-2a and Stereochemical Reassignment. Org. Lett. 2020, 22, 7730–7734. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; De Leon Rodriguez, L.M.; Leung, I.K.H.; Cook, G.M.; Harris, P.W.R.; Brimble, M.A. Total Synthesis and Conformational Study of Callyaerin A: Anti-Tubercular Cyclic Peptide Bearing a Rare Rigidifying (Z)-2,3-Diaminoacrylamide Moiety. Angew. Chem. Int. Ed. 2018, 130, 3693–3697. [Google Scholar] [CrossRef]
- Ibrahim, S.R.M.; Min, C.C.; Teuscher, F.; Ebel, R.; Kakoschke, C.; Lin, W.; Wray, V.; Edrada-Ebel, R.; Proksch, P. Callyaerins A–F and H, new cytotoxic cyclic peptides from the Indonesian marine sponge Callyspongia aerizusa. Bioorganic Med. Chem. 2010, 18, 4947–4956. [Google Scholar] [CrossRef]
- Isidro-Llobet, A.; Kenworthy, M.N.; Mukherjee, S.; Kopach, M.E.; Wegner, K.; Gallou, F.; Smith, A.G.; Roschangar, F. Sustainability challenges in peptide synthesis and purification: From R&D to production. J. Org. Chem. 2019, 84, 4615–4628. [Google Scholar] [CrossRef]
- Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther. 2022, 7, 1–27. [Google Scholar] [CrossRef]
- Hashemi, S.; Vosough, P.; Taghizadeh, S.; Savardashtaki, A. Therapeutic peptide development revolutionized: Harnessing the power of artificial intelligence for drug discovery. Heliyon 2024, 10, e40265. [Google Scholar] [CrossRef]
- Mohapatra, S.; Hartrampf, N.; Poskus, M.; Loas, A.; Gómez-Bombarelli, R.; Pentelute, B.L. Deep learning for prediction and optimization of fast-flow peptide synthesis. ACS Cent. Sci. 2020, 6, 2277–2286. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchanan, D.; Mori, S.; Chadli, A.; Panda, S.S. Natural Cyclic Peptides: Synthetic Strategies and Biomedical Applications. Biomedicines 2025, 13, 240. https://doi.org/10.3390/biomedicines13010240
Buchanan D, Mori S, Chadli A, Panda SS. Natural Cyclic Peptides: Synthetic Strategies and Biomedical Applications. Biomedicines. 2025; 13(1):240. https://doi.org/10.3390/biomedicines13010240
Chicago/Turabian StyleBuchanan, Devan, Shogo Mori, Ahmed Chadli, and Siva S. Panda. 2025. "Natural Cyclic Peptides: Synthetic Strategies and Biomedical Applications" Biomedicines 13, no. 1: 240. https://doi.org/10.3390/biomedicines13010240
APA StyleBuchanan, D., Mori, S., Chadli, A., & Panda, S. S. (2025). Natural Cyclic Peptides: Synthetic Strategies and Biomedical Applications. Biomedicines, 13(1), 240. https://doi.org/10.3390/biomedicines13010240