The Influence of Stress and Binge-Patterned Alcohol Drinking on Mouse Skeletal Muscle Protein Synthesis and Degradation Pathways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Housing
2.2. Drinking in the Dark (DID) Paradigm
2.3. Uncontrollable Tail Shock Stress
2.4. Experimental Design
2.5. Western Blot Analysis
2.6. Statistical Analysis
3. Results
3.1. Body Mass, Food Intake, and DID
3.2. Akt-mTOR Signaling
3.3. Ubiquitin Proteasome Pathway Signaling
3.4. Autophagy Pathway Related Signaling
3.5. Muscle Protein Synthesis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bohm, M.K.; Liu, Y.; Esser, M.B.; Mesnick, J.B.; Lu, H.; Pan, Y.; Greenlund, K.J. Binge Drinking among Adults, by Select Characteristics and State—United States, 2018. Am. J. Transplant. 2021, 21, 4084–4091. [Google Scholar] [CrossRef]
- Volpicelli, J.; Balaraman, G.; Hahn, J.; Wallace, H.; Bux, D. The Role of Uncontrollable Trauma in the Development of PTSD and Alcohol Addiction. Alcohol Res. Health 1999, 23, 256–262. [Google Scholar] [PubMed]
- Head, M.; Goodwin, L.; Debell, F.; Greenberg, N.; Wessely, S.; Fear, N.T. Post-Traumatic Stress Disorder and Alcohol Misuse: Comorbidity in UK Military Personnel. Soc. Psychiatry Psychiatr. Epidemiol. 2016, 51, 1171–1180. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C.; Crum, R.M.; Warner, L.A.; Nelson, C.B.; Schulenberg, J.; Anthony, J.C. Lifetime Co-Occurence of DSM-III-R Alcohol Abuse and Dependence with Other Psychiatric Disorders in the National Comorbidity Study. Arch. Gen. Psychiatry 1997, 54, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Boscarino, J.A.; Adams, R.E.; Galea, S. Alcohol Use in New York after the Terrorist Attacks: A Study of the Effects of Psychological Trauma on Drinking Behavior. Addict. Behav. 2006, 31, 606–621. [Google Scholar] [CrossRef] [PubMed]
- Cerdá Magdalena, M.; Tracy, M.; Galea, S. A Prospective Population Based Study of Changes in Alcohol Use and Binge Drinking after a Mass Traumatic Event. Drug Alcohol. Depend. 2011, 115, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ventura-Cots, M.; Watts, A.E.; Bataller, R. Binge Drinking as a Risk Factor for Advanced Alcoholic Liver Disease. Liver Int. 2017, 37, 1281–1283. [Google Scholar] [CrossRef] [PubMed]
- Waszkiewicz, N.; Szulc, A.; Zwierz, K. Binge Drinking-Induced Subtle Myocardial Injury. Alcohol Clin. Exp. Res. 2013, 37, 1261–1263. [Google Scholar] [CrossRef] [PubMed]
- Golbidi, S.; Frisbee, J.C.; Laher, I.X. Chronic Stress Impacts the Cardiovascular System: Animal Models and Clinical Outcomes. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H1476–H1498. [Google Scholar] [CrossRef]
- Devaki, M.; Nirupama, R.; Yajurvedi, H.N. Chronic Stress-Induced Oxidative Damage and Hyperlipidemia Are Accompanied by Atherosclerotic Development in Rats. Stress 2013, 16, 233–243. [Google Scholar] [CrossRef]
- Wang, Z.; Xia, T.; Jin, S.; Liu, X.; Pan, R.; Yan, M.; Chang, Q. Chronic Restraint Stress-Induced Muscle Atrophy Leads to Fatigue in Mice by Inhibiting the Ampk Signaling Pathway. Biomedicines 2021, 9, 1321. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.H. Lack of Sexual Dimorphism on the Inhibitory Effect of Alcohol on Muscle Protein Synthesis in Rats under Basal Conditions and after Anabolic Stimulation. Physiol. Rep. 2018, 6, e13929. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Adachi, J.; Ueno, Y.; Peters, T.J.; Preedy, V.R. Chronic Ethanol Feeding Increases 7-Hydroperoxycholesterol and Oxysterols in Rat Skeletal Muscle. Metabolism 2002, 51, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Adachi, J.; Asano, M.; Ueno, Y.; Niemelä, O.; Ohlendieck, K.; Peters, T.J.; Preedy, V.R. Alcoholic Muscle Disease and Biomembrane Perturbations (Review). J. Nutr. Biochem. 2003, 14, 616–625. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.L.; McCall, G.E.; Loh, A.S.; Madden, M.C.; Mehan, R.S. Acute Daily Psychological Stress Causes Increased Atrophic Gene Expression and Myostatin-Dependent Muscle Atrophy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R889–R898. [Google Scholar] [CrossRef]
- Wang, D.X.M.; Yao, J.; Zirek, Y.; Reijnierse, E.M.; Maier, A.B. Muscle Mass, Strength, and Physical Performance Predicting Activities of Daily Living: A Meta-Analysis. J. Cachexia Sarcopenia Muscle 2020, 11, 3–25. [Google Scholar] [CrossRef] [PubMed]
- Stein, T.P.; Wade, C.E. Metabolic Consequences of Muscle Disuse Atrophy. J. Nutr. 2005, 135, 1824S–1828S. [Google Scholar] [CrossRef]
- Rubio-Ruiz, M.E.; Guarner-Lans, V.; Pérez-Torres, I.; Soto, M.E. Mechanisms Underlying Metabolic Syndrome-Related Sarcopenia and Possible Therapeutic Measures. Int. J. Mol. Sci. 2019, 20, 647. [Google Scholar] [CrossRef]
- Lang, C.H.; Kimball, S.R.; Frost, R.A.; Vary, T.C. Alcohol Myopathy: Impairment of Protein Synthesis and Translation Initiation. Int. J. Biochem. Cell Biol. 2001, 33, 457–473. [Google Scholar] [CrossRef]
- Fanzani, A.; Conraads, V.M.; Penna, F.; Martinet, W. Molecular and Cellular Mechanisms of Skeletal Muscle Atrophy: An Update. J. Cachexia Sarcopenia Muscle 2012, 3, 163–179. [Google Scholar] [CrossRef]
- Reed, C.H.; Buhr, T.J.; Tystahl, A.C.; Bauer, E.E.; Clark, P.J.; Valentine, R.J. The Effects of Voluntary Binge-Patterned Ethanol Ingestion and Daily Wheel Running on Signaling of Muscle Protein Synthesis and Degradation in Female Mice. Alcohol 2022, 104, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Frost, R.A.; Lang, C.H. Alcohol Impairs Insulin and IGF-I Stimulation of S6K1 but Not 4E-BP1 in Skeletal Muscle. Am. J. Physiol. Endocrinol. Metab. 2002, 283, 917–928. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.H.; Frost, R.A.; Deshpande, N.; Kumar, V.; Vary, T.C.; Jefferson, L.S.; Kimball, S.R. Alcohol Impairs Leucine-Mediated Phosphorylation of 4E-BP1, S6K1, EIF4G, and MTOR in Skeletal Muscle. Am. J. Physiol. Endocrinol. Metab. 2003, 285, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
- Steiner, J.L.; Kimball, S.R.; Lang, C.H. Acute Alcohol-Induced Decrease in Muscle Protein Synthesis in Female Mice Is REDD-1 and MTOR-Independent. Alcohol Alcohol. 2016, 51, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.H.; Frost, R.A.; Vary, T.C. Skeletal Muscle Protein Synthesis and Degradation Exhibit Sexual Dimorphism after Chronic Alcohol Consumption but Not Acute Intoxication. Am. J. Physiol. Endocrinol. Metab. 2007, 292, 1497–1506. [Google Scholar] [CrossRef] [PubMed]
- Preedy, V.R.; Peters, T.J. The Effect of Chronic Ethanol Ingestion on Protein Metabolism in Type-I- and Type-II-Fibre-Rich Skeletal Muscles of the Rat. Biochem. J. 1988, 254, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Crowell, K.T.; Laufenberg, L.J.; Lang, C.H. Chronic Alcohol Consumption, but Not Acute Intoxication, Decreases In Vitro Skeletal Muscle Contractile Function. Alcohol Clin. Exp. Res. 2019, 43, 2090–2099. [Google Scholar] [CrossRef] [PubMed]
- Fleshner, M.; Nguyen, K.T.; Cotter, C.S.; Watkins, L.R.; Maier, S.F. Acute Stressor Exposure Both Suppresses Acquired Immunity and Potentiates Innate Immunity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1998, 275, R870–R878. [Google Scholar] [CrossRef]
- Buhr, T.J.; Reed, C.H.; Wee, O.M.; Lee, J.H.; Yuan, L.; Fleshner, M.; Valentine, R.J.; Clark, P.J.; Clark, P.J. The Persistence of Stress-Induced Physical Inactivity in Rats: An Investigation of Central Monoamine Neurotransmitters and Skeletal Muscle Oxidative Stress. Front. Behav. Neurosci. 2023, 17, 1–16. [Google Scholar] [CrossRef]
- Bauer, E.E.; Reed, C.H.; Lyte, M.; Clark, P.J. An Evaluation of the Rat Intestinal Monoamine Biogeography Days Following Exposure to Acute Stress. Front. Physiol. 2022, 13, 1021985. [Google Scholar] [CrossRef]
- Maier, S.F.; Seligman, M.E.P. Learned Helplessness at Fifty: Insights from Neuroscience. Psychol. Rev. 2016, 123, 349–367. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.M.; McEwen, B.S. Establishing an Agenda for Translational Research on PTSD. Ann. N. Y. Acad. Sci. 2006, 1071, 294–312. [Google Scholar] [CrossRef] [PubMed]
- Clark, P.J.; Ghasem, P.R.; Mika, A.; Day, H.E.; Herrera, J.J.; Greenwood, B.N.; Fleshner, M. Wheel Running Alters Patterns of Uncontrollable Stress-Induced Cfos MRNA Expression in Rat Dorsal Striatum Direct and Indirect Pathways: A Possible Role for Plasticity in Adenosine Receptors. Behavioural. Brain Res. 2014, 272, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Caldarone, B.J.; George, T.P.; Zachariou, V.; Picciotto, M.R. Gender Differences in Learned Helplessness Behavior Are Influenced by Genetic Background. Pharmacol. Biochem. Behav. 2000, 66, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Chourbaji, S.; Zacher, C.; Sanchis-Segura, C.; Dormann, C.; Vollmayr, B.; Gass, P. Learned Helplessness: Validity and Reliability of Depressive-like States in Mice. Brain Res. Protocols 2005, 16, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Thiele, T.E.; Navarro, M. “Drinking in the Dark” (DID) Procedures: A Model of Binge-like Ethanol Drinking in Non-Dependent Mice. Alcohol 2014, 48, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, J.S.; Best, K.; Belknap, J.K.; Finn, D.A.; Crabbe, J.C. Evaluation of a Simple Model of Ethanol Drinking to Intoxication in C57BL/6J Mice. Physiol. Behav. 2005, 84, 53–63. [Google Scholar] [CrossRef]
- Bauer, E.E.; Shoeman, A.; Buhr, T.J.; Daniels, K.M.; Lyte, M.; Clark, P.J. Voluntary Binge-Patterned Alcohol Drinking and Sex-Specific Influences on Monoamine-Related Neurochemical Signatures in the Mouse Gut and Brain. Alcohol Clin. Exp. Res. 2021, 45, 996–1012. [Google Scholar] [CrossRef] [PubMed]
- Reed, C.H.; Bauer, E.E.; Shoeman, A.; Buhr, T.J.; Clark, P.J. Acute Stress Exposure Alters Food-Related Brain Monoaminergic Profiles in a Rat Model of Anorexia. J. Nutr. 2021, 151, 3617–3627. [Google Scholar] [CrossRef]
- Clark, P.J.; Amat, J.; McConnell, S.O.; Ghasem, P.R.; Greenwood, B.N.; Maier, S.F.; Fleshner, M. Running Reduces Uncontrollable Stress-Evoked Serotonin and Potentiates Stress-Evoked Dopamine Concentrations in the Rat Dorsal Striatum. PLoS ONE 2015, 10, e0141898. [Google Scholar] [CrossRef]
- Verbitsky, A.; Dopfel, D.; Zhang, N. Rodent Models of Post-Traumatic Stress Disorder: Behavioral Assessment. Transl. Psychiatry 2020, 10, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Aviner, R. The Science of Puromycin: From Studies of Ribosome Function to Applications in Biotechnology. Comput. Struct. Biotechnol. J. 2020, 18, 1074–1083. [Google Scholar] [CrossRef] [PubMed]
- Starck, S.R.; Green, H.M.; Alberola-Illa, J.; Roberts, R.W. A General Approach to Detect Protein Expression In Vivo Using Fluorescent Puromycin Conjugates. Chem. Biol. 2004, 11, 999–1008. [Google Scholar] [PubMed]
- Steiner, J.L.; Gordon, B.S.; Lang, C.H. Moderate Alcohol Consumption Does Not Impair Overloadinduced Muscle Hypertrophy and Protein Synthesis. Physiol. Rep. 2015, 3, e12333. [Google Scholar] [CrossRef] [PubMed]
- Eo, H.; Reed, C.H.; Valentine, R.J. Imoxin Prevents Dexamethasone-Induced Promotion of Muscle-Specific E3 Ubiquitin Ligases and Stimulates Anabolic Signaling in C2C12 Myotubes. Biomed. Pharmacother. 2020, 128, 110238. [Google Scholar] [CrossRef] [PubMed]
- Engelbrecht, A.M.; Smith, C.; Neethling, I.; Thomas, M.; Ellis, B.; Mattheyse, M.; Myburgh, K.H. Daily Brief Restraint Stress Alters Signaling Pathways and Induces Atrophy and Apoptosis in Rat Skeletal Muscle. Stress 2010, 13, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Thapaliya, S.; Runkana, A.; McMullen, M.R.; Nagy, L.E.; McDonald, C.; Prasad, S.V.N.; Dasarathy, S. Alcohol-Induced Autophagy Contributes to Loss in Skeletal Muscle Mass. Autophagy 2014, 10, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.H.; Frost, R.A.; Svanberg, E.; Vary, T.C. IGF-I/IGFBP-3 Ameliorates Alterations in Protein Synthesis, EIF4E Availability, and Myostatin in Alcohol-Fed Rats. Am. J. Physiol. Endocrinol. Metab. 2004, 286, 916–926. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Yang, M.; Wang, X.; Yang, L.; Bai, C.; Li, G. Mstn Knockdown Decreases the Trans-Differentiation from Myocytes to Adipocytes by Reducing Jmjd3 Expression via the SMAD2/SMAD3 Complex. Biosci. Biotechnol. Biochem. 2019, 83, 2090–2096. [Google Scholar] [CrossRef]
- Wang, X.; Wei, Z.; Gu, M.; Zhu, L.; Hai, C.; Di, A.; Wu, D.; Bai, C.; Su, G.; Liu, X.; et al. Loss of Myostatin Alters Mitochondrial Oxidative Phosphorylation, TCA Cycle Activity, and ATP Production in Skeletal Muscle. Int. J. Mol. Sci. 2022, 23, 15707. [Google Scholar] [CrossRef]
- Bodine, S.C.; Stitt, T.N.; Gonzalez, M.; Kline, W.O.; Stover, G.L.; Bauerlein, R.; Zlotchenko, E.; Scrimgeour, A.; Lawrence, J.C.; Glass, D.J.; et al. Akt/MTOR Pathway Is a Crucial Regulator of Skeletal Muscle Hypertrophy and Can Prevent Muscle Atrophy In Vivo. Nature 2001, 3, 1014–1019. [Google Scholar] [CrossRef] [PubMed]
- Hahn-Windgassen, A.; Nogueira, V.; Chen, C.C.; Skeen, J.E.; Sonenberg, N.; Hay, N. Akt Activates the Mammalian Target of Rapamycin by Regulating Cellular ATP Level and AMPK Activity. J. Biol. Chem. 2005, 280, 32081–32089. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Proud, C.G. The MTOR Pathway in the Control of Protein Synthesis. Physiology 2006, 21, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, Y.; Yoshioka, K.; Suzuki, N. The Ubiquitin-Proteasome System in Regulation of the Skeletal Muscle Homeostasis and Atrophy: From Basic Science to Disorders. J. Physiol. Sci. 2020, 70, 40. [Google Scholar] [CrossRef] [PubMed]
- Attaix, D.; Ventadour, S.; Codran, A.; Béchet, D.; Taillandier, D.; Combaret, L. The Ubiquitin–Proteasome System and Skeletal Muscle Wasting. Essays Biochem. 2005, 41, 173. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.T.; Yang, Y.J.; Huang, R.H.; Zhang, Z.H.; Lin, X. Myostatin Activates the Ubiquitin-Proteasome and Autophagy-Lysosome Systems Contributing to Muscle Wasting in Chronic Kidney Disease. Oxid. Med. Cell Longev. 2015, 2015, 684965. [Google Scholar] [CrossRef] [PubMed]
- Bodine, S.C.; Baehr, L.M. Skeletal Muscle Atrophy and the E3 Ubiquitin Ligases MuRF1 and MAFbx/Atrogin-1. Am. J. Physiol. Endocrinol. Metab. 2014, 307, E469–E484. [Google Scholar] [CrossRef]
- Sato, A.Y.; Richardson, D.; Cregor, M.; Davis, H.M.; Au, E.D.; McAndrews, K.; Zimmers, T.A.; Organ, J.M.; Peacock, M.; Plotkin, L.I.; et al. Glucocorticoids Induce Bone and Muscle Atrophy by Tissue-Specific Mechanisms Upstream of E3 Ubiquitin Ligases. Endocrinology 2017, 158, 664–677. [Google Scholar] [CrossRef] [PubMed]
- Tupling, A.R.; Bombardier, E.; Vigna, C.; Quadrilatero, J.; Fu, M. Interaction between Hsp70 and the SR Ca2+ Pump: A Potential Mechanism for Cytoprotection in Heart and Skeletal Muscle. Appl. Physiol. Nutr. Metab. 2008, 33, 1023–1032. [Google Scholar] [CrossRef]
- Fernández-Fernández, M.R.; Valpuesta, J.M. Hsp70 Chaperone: A Master Player in Protein Homeostasis. F1000Res 2018, 7, 1–10. [Google Scholar] [CrossRef]
- Pasiakos, S.M.; Carbone, J.W. Assessment of Skeletal Muscle Proteolysis and the Regulatory Response to Nutrition and Exercise. IUBMB Life 2014, 66, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.J.; Ye, L.; Huang, W.F.; Guo, L.J.; Xu, Z.G.; Wu, H.L.; Yang, C.; Liu, H.F. P62 Links the Autophagy Pathway and the Ubiqutin-Proteasome System Upon Ubiquitinated Protein Degradation. Cell Mol. Biol. Lett. 2016, 21, 29. [Google Scholar] [CrossRef] [PubMed]
- Mizushima, N. The Role of the Atg1/ULK1 Complex in Autophagy Regulation. Curr. Opin. Cell. Biol. 2010, 22, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Tanida, I. Autophagosome Formation and Molecular Mechanism of Autophagy. Antioxid. Redox Signal. 2011, 14, 2201–2214. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.P. Molecular Regulation of Skeletal Muscle Mass. Clin. Exp. Pharmacol. Physiol. 2010, 37, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E.K.; Clavarino, G.; Ceppi, M.; Pierre, P. SUnSET, a Nonradioactive Method to Monitor Protein Synthesis. Nat. Methods 2009, 6, 275–277. [Google Scholar] [CrossRef] [PubMed]
- Steiner, J.L.; Lang, C.H. Ethanol Acutely Antagonizes the Refeeding-Induced Increase in MTOR-Dependent Protein Synthesis and Decrease in Autophagy in Skeletal Muscle. Mol Cell Biochem. 2019, 456, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Steiner, J.L.; Lang, C.H. Alcohol Impairs Skeletal Muscle Protein Synthesis and MTOR Signaling in a Time-Dependent Manner Following Electrically Stimulated Muscle Contraction. J. Appl. Physiol. 2014, 117, 1170–1179. [Google Scholar] [CrossRef]
- Fushimi, S.; Nohno, T.; Katsuyama, H. Chronic Stress Induces Type 2b Skeletal Muscle Atrophy via the Inhibition of MTORC1 Signaling in Mice. Med. Sci. 2023, 11, 19. [Google Scholar] [CrossRef]
- Jaiswal, N.; Gavin, M.; Loro, E.; Sostre-Colón, J.; Roberson, P.A.; Uehara, K.; Rivera-Fuentes, N.; Neinast, M.; Arany, Z.; Kimball, S.R.; et al. AKT Controls Protein Synthesis and Oxidative Metabolism via Combined MTORC1 and FOXO1 Signalling to Govern Muscle Physiology. J. Cachexia Sarcopenia Muscle 2022, 13, 495–514. [Google Scholar] [CrossRef]
- McFarlane, C.; Plummer, E.; Thomas, M.; Hennebry, A.; Murray, A.; Ling, N.; Smith, H.; Sharma, M.; Kambadur, R. Myostatin Induces Cachexia by Activating the Ubiquitin Proteolytic System through an NF-KB Independent, FOXO1—Dependent Mehanism. J. Cell Physiol. 2006, 209, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Galt, N.J.; McCormick, S.D.; Froehlich, J.M.; Biga, P.R. A Comparative Examination of Cortisol Effects on Muscle Myostatin and HSP90 Gene Expression in Salmonids. Gen. Comp. Endocrinol. 2016, 237, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Mallidis, C.; Bhasin, S.; Mahabadi, V.; Artaza, J.; Gonzalez-Cadavid, N.; Arias, J.; Salehian, B.; Ma, C.; Mallidis, S.; et al. Glucocorticoid-Induced Skeletal Muscle Atrophy Is Associated with Upregulation of Myostatin Gene Expression. Am. J. Physiol. Endocrinol. Metab. 2003, 285, 363–371. [Google Scholar]
- Fleshner, M.; Terrence, D.; Spencer, R.L.; Laudenslager, M.L.; Watkins, R.; Maier, F. A Long Term Increase in Basal Levels of Corticosterone and a Decrease in Corticosteroid-Binding Globulin after Acute Stress Exposure. Endocrinology 1995, 136, 5336–5342. [Google Scholar] [CrossRef] [PubMed]
- Hanson, A.M.; Young, M.H.; Harrison, B.C.; Zhou, X.; Han, H.Q.; Stodieck, L.S.; Ferguson, V.L. Inhibiting Myostatin Signaling Partially Mitigates Structural and Functional Adaptations to Hindlimb Suspension in Mice. NPJ Microgravity 2023, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Nemazanyy, I.; Blaauw, B.; Paolini, C.; Caillaud, C.; Protasi, F.; Mueller, A.; Proikas-Cezanne, T.; Russell, R.C.; Guan, K.L.; Nishino, I.; et al. Defects of Vps15 in Skeletal Muscles Lead to Autophagic Vacuolar Myopathy and Lysosomal Disease. EMBO Mol. Med. 2013, 5, 870–890. [Google Scholar] [CrossRef] [PubMed]
- Masiero, E.; Agatea, L.; Mammucari, C.; Blaauw, B.; Loro, E.; Komatsu, M.; Metzger, D.; Reggiani, C.; Schiaffino, S.; Sandri, M. Autophagy Is Required to Maintain Muscle Mass. Cell Metab. 2009, 10, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Rubinsztein, D.C.; Cuervo, A.M.; Ravikumar, B.; Sarkar, S.; Korolchuk, V.; Kaushik, S.; Klionsky, D.J. In Search of an “Autophagomometer”. Autophagy 2009, 5, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.H.; Lee, W.; Park, S.H.; Lee, K.Y.; Choi, Y.J.; Choi, S.; Kang, D.; Kim, S.; Chang, T.S.; Hong, S.S.; et al. Diclofenac Impairs Autophagic Flux via Oxidative Stress and Lysosomal Dysfunction: Implications for Hepatotoxicity. Redox Biol. 2020, 37, 101751. [Google Scholar] [CrossRef]
- Lim, J.; Lachenmayer, M.L.; Wu, S.; Liu, W.; Kundu, M.; Wang, R.; Komatsu, M.; Oh, Y.J.; Zhao, Y.; Yue, Z. Proteotoxic Stress Induces Phosphorylation of P62/SQSTM1 by ULK1 to Regulate Selective Autophagic Clearance of Protein Aggregates. PLoS Genet. 2015, 11, e1004987. [Google Scholar] [CrossRef]
- Welch, W.J. Mammalian stress response: Cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol. Rev. 1992, 72, 1063–1081. [Google Scholar] [CrossRef] [PubMed]
- Steiner, J.L.; Lang, C.H. Dysregulation of Skeletal Muscle Protein Metabolism by Alcohol. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E699–E712. [Google Scholar] [CrossRef]
- Kimball, S.R.; Lang, C.H. Mechanisms Underlying Muscle Protein Imbalance Induced by Alcohol. Annu. Rev. Nutr. 2018, 38, 197–217. [Google Scholar] [CrossRef] [PubMed]
- Pal, R.; Bondar, V.V.; Adamski, C.J.; Rodney, G.G.; Sardiello, M. Inhibition of ERK1/2 Restores GSK3β Activity and Protein Synthesis Levels in a Model of Tuberous Sclerosis. Sci. Rep. 2017, 7, 4174. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, M.C.; Er, E.E.; Blenis, J. The Ras-ERK and PI3K-MTOR Pathways: Cross-Talk and Compensation. Trends Biochem. Sci. 2011, 36, 320–328. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, F.; Modrak, S.; Little, A.; Zhang, H. Chronic Alcohol Consumption Enhances Skeletal Muscle Wasting in Mice Bearing Cachectic Cancers: The Role of TNFα/Myostatin Axis. Alcohol. Clin. Exp. Res. 2019, 44, 66–77. [Google Scholar] [CrossRef]
- Keller-Ross, M.L.; Schlinder-Delap, B.; Doyel, R.; Larson, G.; Hunter, S.K. Muscle Fatigability and Control of Force in Men with Posttraumatic Stress Disorder. Med. Sci. Sports Exerc. 2014, 46, 1302–1313. [Google Scholar] [CrossRef]
- Cheval, B.; Chabert, C.; Sieber, S.; Orsholits, D.; Cooper, R.; Guessous, I.; Blane, D.; Kliegel, M.; Courvoisier, D.S.; Kelly-Irving, M.; et al. Association between Adverse Childhood Experiences and Muscle Strength in Older Age. Gerontology 2019, 65, 474–484. [Google Scholar] [CrossRef]
- Lin, L.; Sun, W.; Lu, C.; Chen, W.; Guo, V.Y. Adverse Childhood Experiences and Handgrip Strength among Middle-Aged and Older Adults: A Cross-Sectional Study in China. BMC Geriatr. 2022, 22, 118. [Google Scholar] [CrossRef]
- Pasiakos, S.M.; Vislocky, L.M.; Carbone, J.W.; Altieri, N.; Konopelski, K.; Freake, H.C.; Anderson, J.M.; Ferrando, A.A.; Wolfe, R.R.; Rodriguez, N.R. Acute Energy Deprivation Affects Skeletal Muscle Protein Synthesis and Associated Intracellular Signaling Proteins in Physically Active Adults. J. Nutr. 2010, 140, 745–751. [Google Scholar] [CrossRef]
- Yuan, C.L.; Sharma, N.; Gilge, D.A.; Stanley, W.C.; Li, Y.; Hatzoglou, M.; Previs, S.F.; Previs, S.F. Preserved Protein Synthesis in the Heart in Response to Acute Fasting and Chronic Food Restriction despite Reductions in Liver and Skeletal Muscle. Innov. Methodol. Am. J. Physiol. Endocrinol. Metab. 2008, 295, 216–222. [Google Scholar]
- Munoz, K.A.; Aannestad, A.; Tischler, M.E.; Henriksen, E.J. Skeletal Muscle Protein Content and Synthesis after Voluntary Running and Subsequent Unweighting. Metabolism 1994, 43, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Paddon-Jones, D. Interplay of Stress and Physical Inactivity on Muscle Loss: Nutritional Countermeasures. J. Nutr. 2006, 136, 2123–2126. [Google Scholar] [CrossRef] [PubMed]
No Stress Water | No Stress Alcohol | Stress Water | Stress Alcohol | |
---|---|---|---|---|
Initial body weight (g) | 25.9 ± 0.3 | 25.1 ± 0.6 | 25.1 ± 0.6 | 25.3 ± 0.6 |
Final body weight (g) | 26.6 ± 0.4 | 25.5 ± 0.6 | 26.1 ± 0.7 | 25.8 ± 0.4 |
Food intake (g) (post-stress) | 4.0 ± 0.2 | 3.8 ± 0.1 | 3.9 ± 0.2 | 3.6 ± 0.1 |
2 h Drinking Volume (mL) | 0.2 ± 0.03 | 0.5 ± 0.04 # | 0.2 ± 0.03 | 0.5 ± 0.03 # |
2 h Ethanol (g/kg) | N/A | 3.3 ± 0.3 | N/A | 3.2 ± 0.2 |
4 h Drinking Volume (mL) (pre-stress) | 0.3 ± 0.1 | 1.1 ± 0.1 # | 0.2 ± 0.1 | 1.0 ± 0.1 # |
4 h Drinking Volume (mL) (post-stress) | 0.4 ± 0.1 | 1.3 ± 0.1 # | 0.4 ± 0.2 | 1.0 ± 0.1 # |
4 h Ethanol (g/kg) (post-stress) | N/A | 8.2 ± 0.7 | N/A | 6.5 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reed, C.H.; Tystahl, A.C.; Eo, H.; Buhr, T.J.; Bauer, E.E.; Lee, J.H.; Clark, P.J.; Valentine, R.J. The Influence of Stress and Binge-Patterned Alcohol Drinking on Mouse Skeletal Muscle Protein Synthesis and Degradation Pathways. Biomolecules 2024, 14, 527. https://doi.org/10.3390/biom14050527
Reed CH, Tystahl AC, Eo H, Buhr TJ, Bauer EE, Lee JH, Clark PJ, Valentine RJ. The Influence of Stress and Binge-Patterned Alcohol Drinking on Mouse Skeletal Muscle Protein Synthesis and Degradation Pathways. Biomolecules. 2024; 14(5):527. https://doi.org/10.3390/biom14050527
Chicago/Turabian StyleReed, Carter H, Anna C. Tystahl, Hyeyoon Eo, Trevor J. Buhr, Ella E. Bauer, Ji Heun Lee, Peter J. Clark, and Rudy J. Valentine. 2024. "The Influence of Stress and Binge-Patterned Alcohol Drinking on Mouse Skeletal Muscle Protein Synthesis and Degradation Pathways" Biomolecules 14, no. 5: 527. https://doi.org/10.3390/biom14050527
APA StyleReed, C. H., Tystahl, A. C., Eo, H., Buhr, T. J., Bauer, E. E., Lee, J. H., Clark, P. J., & Valentine, R. J. (2024). The Influence of Stress and Binge-Patterned Alcohol Drinking on Mouse Skeletal Muscle Protein Synthesis and Degradation Pathways. Biomolecules, 14(5), 527. https://doi.org/10.3390/biom14050527