Next Article in Journal
On h-Quasi-Hemi-Slant Riemannian Maps
Previous Article in Journal
Towards Optimal Robustness of Network Controllability by Nested-Edge Rectification
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Optical Solitons in Fiber Bragg Gratings with Dispersive Reflectivity Having Five Nonlinear Forms of Refractive Index

1
Department of Mathematics, Northeast Petroleum University, Daqing 163318, China
2
Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245, USA
3
Mathematical Modeling and Applied Computation (MMAC) Research Group, Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
4
Department of Applied Mathematics, National Research Nuclear University, 31 Kashirskoe Hwy, 115409 Moscow, Russia
5
Department of Applied Sciences, Cross-Border Faculty, Dunarea de Jos University of Galati, 111 Domneasca Street, 800201 Galati, Romania
6
Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa 0204, South Africa
7
Department of Computer Engineering, Biruni University, 34010 Istanbul, Turkey
8
Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania
9
Department of Computer Science and Information Technology, Faculty of Automation, Computers, Electrical Engineering and Electronics, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania
*
Author to whom correspondence should be addressed.
Submission received: 16 September 2022 / Revised: 3 November 2022 / Accepted: 10 November 2022 / Published: 13 November 2022
(This article belongs to the Section Mathematical Analysis)

Abstract

:
This paper implements the trial equation approach to retrieve cubic–quartic optical solitons in fiber Bragg gratings with the aid of the trial equation methodology. Five forms of nonlinear refractive index structures are considered. They are the Kerr law, the parabolic law, the polynomial law, the quadratic–cubic law, and the parabolic nonlocal law. Dark and singular soliton solutions are recovered along with Jacobi’s elliptic functions with an appropriate modulus of ellipticity.
MSC:
78A60

1. Introduction

The dynamics of optical solitons have revolutionized modern-day telecommunication engineering. Intercontinental long-distance communication technology has immeasurably advanced. These soliton molecules or pulses constitute the fundamentals of the engineering of such communications. Yet, there pressing issues still need to be addressed for smooth and sustainable soliton propagation across long distances through optical fibers [1,2,3,4,5].
Occasionally, the chromatic dispersion (CD) gradually becomes depleted during soliton transmission over intercontinental distances. This has led to the replacement of CD with the collective effect of third-order and fourth-order dispersions. Together, this is referred to as cubic–quartic (CQ) dispersion, which has led to the emergence of CQ solitons [6,7,8,9,10]. Another countermeasure to circumvent the effect of the depletion of CD is to introduce a grating structure along the internal walls of the fiber core, which produces dispersive reflectivity [11,12,13,14,15]. This technology was first introduced by Bragg; hence, it is referred to as a Bragg grating. The current paper combines both such measures to lead to the structure of the governing models [16,17,18,19,20]. Five forms of nonlinear refractive index structures are also studied in this paper.
The model is modified for each of these nonlinear forms. They are individually studied by the aid of the trial equation approach, and the soliton solutions are recovered. The fundamental solutions in terms of Jacobi’s elliptic functions naturally emerge from the integration scheme. Subsequently, when the limiting approach to these elliptic functions are implemented, with respect to the modulus of ellipticity, the soliton solutions emerge. Thus, the integration scheme is a double-layered process to yield soliton solutions from the model. It must also be noted that only dark and singular soliton solutions emerge from this mathematical scheme.

2. Trial Equation Method

Step 1.
Consider a model equation
G ( u , u x , u t , u x x , u x t , u t t , ) = 0 ,
where u is the dependent variable, and x and t are the independent variables. Take the wave variable
ξ = h ( x m t ) , u ( x , t ) = u ( ξ ) ,
where h and m are constants. Substituting Equation (2) into Equation (1) yields an ordinary differential equation
G ( u , u , u , ) = 0 .
Step 2.
Take the trial equation [21,22,23,24,25,26,27,28]
u = i = 0 n s i u i ( ξ ) ,
where n comes from the balance algorithm, and we derive
( u ) 2 = F ( u ) = i = 0 n 2 s i i + 1 u i + 1 + s ,
u = ( i = 2 n i ( i 1 ) s i u i 2 ) ( i = 0 n 2 s i i + 1 u i + 1 + s ) + ( i = 1 n i s i u i 1 ) ( i = 0 n s i u i ) .
Inserting Equation (4) into Equation (3) leaves us with a system of equations that enables us to obtain the values of s i and s.
Step 3.
Write Equation (5) as the standard integral form
± ( ξ ξ 0 ) = d u F ( u ) .
Then, we can obtain the solutions to Equation (1) by solving the integral (7).

3. Application to Fiber Bragg Gratings

3.1. Kerr Law

In this case, the model is
i q t + i a 1 r x x x + b 1 r x x x x + ( c 1 | q | 2 + d 1 | r | 2 ) q + i α 1 q x + β 1 r = 0 ,
i r t + i a 2 q x x x + b 2 q x x x x + ( c 2 | r | 2 + d 2 | q | 2 ) r + i α 2 r x + β 2 q = 0 ,
where t and x account for time in dimensionless form and the non-dimensional distance, respectively, while q ( x , t ) and r ( x , t ) represent the wave profiles. a j , b j , c j , α j , d j , and β j ( j = 1 , 2 ) come from the third-order dispersion, fourth-order dispersion, self-phase modulation, intermodal dispersion, cross-phase modulation, and the detuning parameters, respectively. The first terms stand for the linear temporal evolution, and i = 1 .
We consider the wave profiles
q ( x , t ) = P 1 ( ξ ) e i ϕ ( x , t ) ,
r ( x , t ) = P 2 ( ξ ) e i ϕ ( x , t ) ,
along with
ξ = k ( x v t ) ,
ϕ ( x , t ) = κ x + ω t + θ ,
where P l ( ξ ) ( l = 1 , 2 ) are the soliton amplitude components, and ξ signifies the wave variable. v, κ , ω , θ , and ϕ ( x , t ) stand for the soliton velocity, the soliton frequency, the soliton wave number, the phase constant, and the soliton phase component, respectively.
Inserting Equations (10) and (11) into Equations (8) and (9) provides us with the ancillary equations
3 κ k 2 P l ˜ ( a l 2 κ b l ) + P l ˜ ( κ 3 a l + κ 4 b l + β l ) + k 4 b l P l ˜ + d l P l P l ˜ 2 + c l P l 3 + P l ( α l κ ω ) = 0 ,
k 3 P l ˜ ( a l 4 κ b l ) + κ 2 k P l ˜ ( 4 κ b l 3 a l ) + k P l ( α l v ) = 0 ,
where l ˜ = 3 l . Setting
P 2 = χ P 1 ,
Equations (14) and (15) evolve as
3 χ κ k 2 ( a 1 2 b 1 κ ) P 1 + P 1 ( a 1 χ κ 3 + α 1 κ + b 1 χ κ 4 + β 1 χ ω ) + b 1 χ k 4 P 1 + P 1 3 ( c 1 + χ 2 d 1 ) = 0 ,
χ k 3 ( a 1 4 b 1 κ ) P 1 + ( 3 a 1 χ κ 2 + α 1 + 4 b 1 χ κ 3 v ) k P 1 = 0 ,
with the usage of the following restrictions
c 2 χ 3 + χ d 2 = c 1 + χ 2 d 1 , a 2 2 b 2 κ = χ ( a 1 2 b 1 κ ) , b 2 = χ b 1 , α 2 χ κ a 2 κ 3 + b 2 κ 4 + β 2 χ ω = a 1 χ κ 3 + α 1 κ + b 1 χ κ 4 + β 1 χ ω .
Equation (18) provides the velocity
v = 3 a 1 χ κ 2 + α 1 + 4 b 1 χ κ 3 ,
by virtue of the relations
α 2 χ 3 a 2 κ 2 + 4 b 2 κ 3 = 3 a 1 χ 2 κ 2 + α 1 χ + 4 b 1 χ 2 κ 3 ,
a l = 4 b l κ ,
while Equation (17) reads as
A 1 P 1 + A 3 P 1 3 + A 2 P 1 + k 2 P 1 = 0 ,
where
A 1 = 3 κ ( a 1 χ 2 b 1 χ κ ) b 1 χ , A 2 = a 1 χ κ 3 + α 1 κ + b 1 χ κ 4 + β 1 χ ω k 2 b 1 χ , A 3 = c 1 + χ 2 d 1 k 2 b 1 χ .
With the usage of the balance algorithm in (23), Equation (5) becomes
( P 1 ) 2 = 2 s 2 3 P 1 3 + s 1 P 1 2 + 2 s 0 P 1 + s ,
where
s 2 = ( 3 A 3 10 k 2 ) 1 2 , s 1 = A 1 5 k 2 , s 0 = ( A 2 6 k 2 + 2 A 1 2 75 k 4 ) ( 3 A 3 10 k 2 ) 1 2 , s = 4 A 1 3 A 3 ( A 2 6 k 2 + 2 A 1 2 75 k 4 ) .
With the help of the criterions
p = ( 2 s 2 3 ) 1 3 P 1 , ξ 1 = ( 2 s 2 3 ) 1 3 ξ ,
Equation (25) becomes
( p ξ 1 ) 2 = p 3 + z 2 p 2 + z 1 p + z 0 ,
where
z 2 = A 1 5 k 2 ( 2 A 3 15 k 2 ) 1 3 , z 1 = ( A 2 3 k 2 + 4 A 1 2 75 k 4 ) ( 3 A 3 10 k 2 ) 1 2 ( 2 A 3 15 k 2 ) 1 6 , z 0 = 4 A 1 3 A 3 ( A 2 6 k 2 + 2 A 1 2 75 k 4 ) .
We rewrite Equation (28) as
± ( ξ 1 ξ 0 ) = d p F ( p ) ,
where
F ( p ) = p 3 + z 2 p 2 + z 1 p + z 0 .
We consider the discriminant system
Δ = 27 ( 2 z 2 3 27 + z 0 z 1 z 2 3 ) 2 4 ( z 1 z 2 2 3 ) 3 , D 1 = z 1 z 2 2 3 .
Case 1.
Δ = 0 , D 1 < 0 , and F ( p ) = ( p γ 1 ) 2 ( p γ 2 ) . When p > γ 2 , if γ 1 > γ 2 , the dark and singular solitons are
q = { ( 2 A 3 15 k 2 ) 1 6 [ ( γ 1 γ 2 ) tanh 2 ( γ 1 γ 2 2 ( ( 2 A 3 15 k 2 ) 1 6 ξ ξ 0 ) ) + γ 2 ] } e i ( κ x + ω t + θ ) ,
q = { ( 2 A 3 15 k 2 ) 1 6 [ ( γ 1 γ 2 ) coth 2 ( γ 1 γ 2 2 ( ( 2 A 3 15 k 2 ) 1 6 ξ ξ 0 ) ) + γ 2 ] } e i ( κ x + ω t + θ ) ,
and if γ 1 < γ 2 , the singular periodic solution is
q = { ( 2 A 3 15 k 2 ) 1 6 [ ( γ 2 γ 1 ) tan 2 ( γ 2 γ 1 2 ( ( 2 A 3 15 k 2 ) 1 6 ξ ξ 0 ) ) + γ 2 ] } e i ( κ x + ω t + θ ) ,
where γ 1 and γ 2 are real numbers.
Figure 1 depicts the plot of a dark soliton (33). The parameter values chosen are γ 1 = 2 , γ 2 = 1 , k = 1 , A 3 = 1 , a 1 = 1 , κ = 1 , α 1 = 1 , b 1 = 1 , and χ = 2 . The dark soliton is featured as a localized intensity dip below a continuous wave background. Dark solitons are meaningful only if the background that supports the dark solitons is modulationally stable. Dark solitons are observed when the carrier wave is modulationally stable [29,30].
Case 2.
Δ = 0 , D 1 = 0 , and F ( p ) = ( p γ 1 ) 3 . The solution is
q = { 4 ( ( 2 A 3 15 k 2 ) 1 6 ξ ξ 0 ) 2 + γ 1 } e i ( κ x + ω t + θ ) ,
where γ 1 is a real number.
Case 3.
Δ > 0 , D 1 < 0 , and F ( p ) = ( p γ 1 ) ( p γ 2 ) ( p γ 3 ) . When γ 1 < γ 2 < γ 3 , if γ 1 < p < γ 2 , the solution is
q = { ( 2 A 3 15 k 2 ) 1 6 [ γ 1 + ( γ 2 γ 1 ) s n 2 ( γ 3 γ 1 2 ( ( 2 A 3 15 k 2 ) 1 6 ξ ξ 0 ) , m ) ] } e i ( κ x + ω t + θ ) ,
and if p > γ 3 , the solution is
q = { ( 2 A 3 15 k 2 ) 1 6 [ γ 3 γ 2 s n 2 ( γ 3 γ 1 2 ( ( 2 A 3 15 k 2 ) 1 6 ξ ξ 0 ) , m ) c n 2 ( γ 3 γ 1 2 ( ( 2 A 3 15 k 2 ) 1 6 ξ ξ 0 ) , m ) ] } e i ( κ x + ω t + θ ) ,
where γ 1 , γ 2 , and γ 3 are real numbers, and m 2 = γ 2 γ 1 γ 3 γ 1 .
Case 4.
Δ < 0 , and F ( p ) = ( p γ 1 ) ( p 2 + l p + j ) , l 2 4 j < 0 . The solution is
q = { ( 2 A 3 15 k 2 ) 1 6 [ γ 1 γ 1 2 + l γ 1 + j + 2 γ 1 2 + l γ 1 + j 1 + c n ( ( γ 1 2 + l γ 1 + j ) 1 4 ( ( 2 A 3 15 k 2 ) 1 6 ξ ξ 0 ) , m ) ] } e i ( κ x + ω t + θ ) ,
where γ 1 , l, and j are real numbers, and m 2 = 1 2 ( 1 γ 1 + l 2 γ 1 2 + l γ 1 + j ) .

3.2. Parabolic Law

In this case, the model evolves as
i q t + i a 1 r x x x + b 1 r x x x x + ( c 1 | q | 2 + d 1 | r | 2 ) q + ( ξ 1 | q | 4 + η 1 | q | 2 | r | 2 + ζ 1 | r | 4 ) q + i α 1 q x + β 1 r = 0 ,
i r t + i a 2 q x x x + b 2 q x x x x + ( c 2 | r | 2 + d 2 | q | 2 ) r + ( ξ 2 | r | 4 + η 2 | q | 2 | r | 2 + ζ 2 | q | 4 ) r + i α 2 r x + β 2 q = 0 .
Substituting Equations (10) and (11) into Equations (40) and (41) provides us with the equations
3 k 2 P l ˜ ( κ a l P l ˜ 2 κ 2 b l ) + P 2 ( κ 3 a l P l ˜ + κ 4 b l P l ˜ + β l ) + k 4 b l P l ˜
+ P l 3 ( η l P l ˜ 2 + c l ) + P l ( d l P l ˜ 2 + ζ l P l ˜ 4 + κ α l ω ) + ξ l P l 5 = 0 ,
k 3 P l ˜ a l 4 κ b l + P l ˜ 4 κ 3 k b l 3 κ 2 k a l + k P l α l v = 0 .
Taking
P 2 = χ P 1 ,
Equations (42) and (43) turn into
k 2 P 1 ( 3 a 1 χ κ 6 b 1 χ κ 2 ) + P 1 ( a 1 χ κ 3 + α 1 κ + b 1 χ κ 4 + β 1 χ ω ) + b 1 χ k 4 P 1 + P 1 3 ( c 1 + χ 2 d 1 ) + P 1 5 ( χ 4 ζ 1 + χ 2 η 1 + ξ 1 ) = 0 ,
and
k 2 P 1 ( a 1 χ 4 b 1 χ κ ) + P 1 ( 3 a 1 χ κ 2 + 4 b 1 χ κ 3 + ( α 1 v ) ) = 0 ,
along with the constraints
c 1 + χ 2 d 1 = χ ( c 2 χ 2 + d 2 ) , a 1 χ κ 3 + α 1 κ + b 1 χ κ 4 + β 1 χ ω = α 2 χ κ a 2 κ 3 + b 2 κ 4 + β 2 χ ω , χ 4 ζ 1 + χ 2 η 1 + ξ 1 = χ P 1 5 ( χ 4 ξ 2 + χ 2 η 2 + ζ 2 ) , χ ( a 1 κ 2 b 1 κ 2 ) = a 2 κ 2 b 2 κ 2 , b 1 χ = b 2 .
Equation (46) yields the velocity
v = 3 a 1 χ κ 2 + α 1 + 4 b 1 χ κ 3 ,
with the aid of the restrictions
α 2 χ 3 a 2 κ 2 + 4 b 2 κ 3 = 3 a 1 χ 2 κ 2 + α 1 χ + 4 b 1 χ 2 κ 3 ,
a l = 4 b l κ ,
while Equation (45) becomes
A 1 P 1 + A 4 P 1 5 + A 3 P 1 3 + A 2 P 1 + k 2 P 1 = 0 ,
where
A 1 = 3 a 1 χ κ 6 b 1 χ κ 2 b 1 χ , A 2 = a 1 χ κ 3 + α 1 κ + b 1 χ κ 4 + β 1 χ ω b 1 χ k 2 , A 3 = c 1 + χ 2 d 1 b 1 χ k 2 , A 4 = χ 4 ζ 1 + χ 2 η 1 + ξ 1 b 1 χ k 2 .
With the usage of the balance procedure in (51), Equation (5) becomes
( P 1 ) 2 = s 3 2 P 1 4 + 2 s 2 3 P 1 3 + s 1 P 1 2 + 2 s 0 P 1 + s ,
where
s 3 = ( A 4 6 k 2 ) 1 2 , s 2 = 0 , s 1 = A 3 10 k 2 ( A 4 6 k 2 ) 1 2 A 1 10 k 2 , s 0 = 0 , s = ( A 3 10 ( A 4 6 k 2 ) 1 2 + 9 A 1 10 ) ( A 3 10 A 4 k 2 + A 1 60 k 4 ( A 4 6 k 2 ) 1 2 ) A 2 6 k 2 ( A 4 6 k 2 ) 1 2 .
With the help of the relations
g = ( 2 s 3 ) 1 3 P 1 2 , ξ 1 = ( 2 s 3 ) 1 3 ξ ,
Equation (53) is
( g ξ 1 ) 2 = g 3 + ϵ 2 g 2 + ϵ 1 g ,
where
ϵ 2 = ( 2 A 3 5 k 2 ( A 4 6 k 2 ) 1 2 2 A 1 5 k 2 ) ( 2 A 4 3 k 2 ) 1 3 , ϵ 1 = ( ( A 3 10 ( A 4 6 k 2 ) 1 2 + 9 A 1 10 ) ( 2 A 3 5 A 4 k 2 + A 1 15 k 4 ( A 4 6 k 2 ) 1 2 ) 2 A 2 3 k 2 ( A 4 6 k 2 ) 1 2 ) ( 2 A 4 3 k 2 ) 1 6 .
We rewrite Equation (56) as
± ( ξ 1 ξ 0 ) = d g F ( g ) ,
where
F ( g ) = g ( g 2 + ϵ 2 g + ϵ 1 ) .
We consider the discriminant system
Δ = ϵ 2 2 4 ϵ 1 .
Case 1.
Δ = 0 . For g > 0 , if ϵ 2 < 0 , we have the dark and singular solitons
q = { ( 2 A 4 3 k 2 ) 1 6 ( ϵ 2 2 tanh 2 ( 1 2 ϵ 2 2 ( ( 2 A 4 3 k 2 ) 1 6 ξ ξ 0 ) ) ) } 1 2 e i ( κ x + ω t + θ ) ,
q = { ( 2 A 4 3 k 2 ) 1 6 ( ϵ 2 2 coth 2 ( 1 2 ϵ 2 2 ( ( 2 A 4 3 k 2 ) 1 6 ξ ξ 0 ) ) ) } 1 2 e i ( κ x + ω t + θ ) ;
if ϵ 2 > 0 , we have the singular periodic solution
q = { ( 2 A 4 3 k 2 ) 1 6 ( ϵ 2 2 tan 2 ( 1 2 ϵ 2 2 ( ( 2 A 4 3 k 2 ) 1 6 ξ ξ 0 ) ) ) } 1 2 e i ( κ x + ω t + θ ) ;
if ϵ 2 = 0 , we have the solution
q = { 4 ( 2 A 4 3 k 2 ) 1 6 ( ( 2 A 4 3 k 2 ) 1 6 ξ ξ 0 ) 2 } 1 2 e i ( κ x + ω t + θ ) .
Figure 2 depicts the plot of a singular soliton (62). The parameter values chosen are ϵ 2 = 1 , k = 1 , A 4 = 1 , a 1 = 1 , κ = 1 , α 1 = 1 , b 1 = 1 , and χ = 2 .
Case 2.
Δ > 0 , and ϵ 1 = 0 . For g > ϵ 2 , if ϵ 2 > 0 , we have the dark and singular solitons
q = { ( 2 A 4 3 k 2 ) 1 6 ( ϵ 2 2 tanh 2 ( 1 2 ϵ 2 2 ( ( 2 A 4 3 k 2 ) 1 6 ξ ξ 0 ) ) ϵ 2 ) } 1 2 e i ( κ x + ω t + θ ) ,
q = { ( 2 A 4 3 k 2 ) 1 6 ( ϵ 2 2 coth 2 ( 1 2 ϵ 2 2 ( ( 2 A 4 3 k 2 ) 1 6 ξ ξ 0 ) ) ϵ 2 ) } 1 2 e i ( κ x + ω t + θ ) ;
if ϵ 2 < 0 , we have the singular periodic solution
q = { ( 2 A 4 3 k 2 ) 1 6 ( ϵ 2 2 tan 2 ( 1 2 ϵ 2 2 ( ( 2 A 4 3 k 2 ) 1 6 ξ ξ 0 ) ) ϵ 2 ) } 1 2 e i ( κ x + ω t + θ ) .
Case 3.
Δ > 0 , and ϵ 1 0 . Suppose that γ 1 < γ 2 < γ 3 , one of them is zero, and the other two are roots of g 2 + ϵ 2 g + ϵ 1 . For γ 1 < g < γ 2 , we have
q = { ( 2 A 4 3 k 2 ) 1 6 [ γ 1 + ( γ 2 γ 1 ) s n 2 ( γ 3 γ 1 2 ( ( 2 A 4 3 k 2 ) 1 6 ξ ξ 0 ) , m ) ] } 1 2 e i ( κ x + ω t + θ ) ,
and for g > γ 3 , we have
q = { ( 2 A 4 3 k 2 ) 1 6 [ γ 3 γ 2 s n 2 ( γ 3 γ 1 2 ( ( 2 A 4 3 k 2 ) 1 6 ξ ξ 0 ) , m ) c n 2 ( γ 3 γ 1 2 ( ( 2 A 4 3 k 2 ) 1 6 ξ ξ 0 ) , m ) ] } 1 2 e i ( κ x + ω t + θ ) ,
where m 2 = γ 2 γ 1 γ 3 γ 1 .
Case 4.
Δ < 0 . For g > 0 , we have
q = { ( 2 A 4 3 k 2 ) 1 6 ( 2 ϵ 1 1 + c n ( ϵ 1 1 4 ( ( 2 A 4 3 k 2 ) 1 6 ξ ξ 0 ) , m ) ϵ 1 ) } 1 2 e i ( κ x + ω t + θ ) ,
where m 2 = 1 ϵ 2 2 ϵ 1 2 .

3.3. Polynomial Law

In this case, the model reads as
i q t + i a 1 r x x x + b 1 r x x x x + ( c 1 | q | 2 + d 1 | r | 2 ) q + ( ξ 1 | q | 4 + η 1 | q | 2 | r | 2 + ζ 1 | r | 4 ) q + ( l 1 | q | 6 + m 1 | q | 4 | r | 2 + n 1 | q | 2 | r | 4 + p 1 | r | 6 ) q + i α 1 q x + β 1 r = 0 ,
i r t + i a 2 q x x x + b 2 q x x x x + ( c 2 | r | 2 + d 2 | q | 2 ) r + ( ξ 2 | r | 4 + η 2 | r | 2 | q | 2 + ζ 2 | q | 4 ) r + ( l 2 | r | 6 + m 2 | r | 4 | q | 2 + n 2 | r | 2 | q | 4 + p 2 | q | 6 ) r + i α 2 r x + β 2 q = 0 .
Putting Equations (10) and (11) into Equations (71) and (72) provides us with the ancillary equations
3 κ k 2 a l P l ˜ κ 3 a l P l ˜ + k 4 b l P l ˜ 6 κ 2 k 2 b l P l ˜ + κ 4 b l P l ˜ + P l 3 ( n l P l ˜ 4 + η l P l ˜ 2 + c l ) + P l ( d l P l ˜ 2 + p l P l ˜ 6 + ζ l P l ˜ 4 + κ α l ω ) + P l 5 ( m l P l ˜ 2 + ξ l ) + β l P l ˜ + l l P l 7 = 0 ,
k 3 P l ˜ ( a l 4 κ b l ) + k P l ˜ ( 4 κ 3 b l 3 κ 2 a l ) + k P l ( α l v ) = 0 .
Setting
P 2 = χ P 1 ,
Equations (73) and (74) becomes
χ k 2 P 1 ( 3 a 1 κ 6 b 1 κ 2 ) + P 1 ( a 1 χ κ 3 + α 1 κ + b 1 χ κ 4 + β 1 χ ω ) + b 1 χ k 4 P 1 + P 1 3 ( c 1 + χ 2 d 1 ) + P 1 7 ( l 1 + χ 2 m 1 + χ 4 n 1 + χ 6 p 1 ) + P 1 5 ( χ 4 ζ 1 + χ 2 η 1 + ξ 1 ) = 0 ,
k 2 P 1 ( a 1 χ 4 b 1 χ κ ) + P 1 ( 3 a 1 χ κ 2 + 4 b 1 χ κ 3 + ( α 1 v ) ) = 0 ,
together with the conditions
c 1 + χ 2 d 1 = χ ( c 2 χ 2 + d 2 ) , l 1 + χ 2 m 1 + χ 4 n 1 + χ 6 p 1 = χ ( χ 6 l 2 + χ 4 m 2 + χ 2 n 2 + p 2 ) , a 1 χ κ 3 + α 1 κ + b 1 χ κ 4 + β 1 χ ω = α 2 χ κ a 2 κ 3 + b 2 κ 4 + β 2 χ ω , χ 4 ζ 1 + χ 2 η 1 + ξ 1 = χ ( χ 4 ξ 2 + χ 2 η 2 + ζ 2 ) , χ ( a 1 κ 2 b 1 κ 2 ) = a 2 κ 2 b 2 κ 2 , b 1 χ = b 2 .
Equation (77) gives way to the velocity
v = 3 a 1 χ κ 2 + α 1 + 4 b 1 χ κ 3 ,
with the aid of the constraints
α 2 χ 3 a 2 κ 2 + 4 b 2 κ 3 = 3 a 1 χ 2 κ 2 + α 1 χ + 4 b 1 χ 2 κ 3 ,
a l = 4 b l κ ,
while Equation (76) becomes
A 1 P 1 + A 5 P 1 7 + A 4 P 1 5 + A 3 P 1 3 + A 2 P 1 + k 2 P 1 = 0 ,
where
A 1 = χ ( 3 a 1 κ 6 b 1 κ 2 ) b 1 χ , A 2 = a 1 χ κ 3 + α 1 κ + b 1 χ κ 4 + β 1 χ ω b 1 χ k 2 , A 3 = c 1 + χ 2 d 1 b 1 χ k 2 , A 4 = χ 4 ζ 1 + χ 2 η 1 + ξ 1 b 1 χ k 2 , A 5 = l 1 + χ 2 m 1 + χ 4 n 1 + χ 6 p 1 b 1 χ k 2 .
With the help of the balance technique in (82), Equation (5) simplifies to
( P 1 ) 2 = 2 s 4 5 P 1 5 + s 3 2 P 1 4 + 2 s 2 3 P 1 3 + s 1 P 1 2 + 2 s 0 P 1 + s ,
where
s 4 = ( 5 A 5 44 k 2 ) 1 2 , s 3 = 0 , s 2 = 5 A 4 74 k 2 ( 5 A 5 44 k 2 ) 1 2 , s 1 = A 1 17 k 2 , s 0 = A 3 28 k 2 ( 5 A 5 44 k 2 ) 1 2 125 A 4 2 229992 k 4 ( 5 A 5 44 k 2 ) 3 2 , s = 14652 A 1 A 2 209457 A 5 .
By the aid of the criterions
f = ( 2 s 4 5 ) 1 5 P 1 , ξ 1 = ( 2 s 4 5 ) 1 5 ξ ,
Equation (84) becomes
( f ξ 1 ) 2 = f 5 + y 3 f 3 + y 2 f 2 + y 1 f + y 0 ,
where
y 3 = ( 2 5 ) 3 5 15 A 4 222 k 2 ( 5 A 5 44 k 2 ) 4 5 , y 2 = A 1 17 k 2 ( A 5 55 k 2 ) 1 5 , y 1 = ( 2 5 ) 1 5 ( A 3 14 k 2 ( 5 A 5 44 k 2 ) 3 5 + 125 A 4 2 114996 k 4 ( 5 A 5 44 k 2 ) 8 5 ) , y 0 = h .
We rewrite Equation (87) as
± ( ξ 1 ξ 0 ) = d f F ( f ) ,
where
F ( f ) = f 5 + y 3 f 3 + y 2 f 2 + y 1 f + y 0 .
We consider the discriminant system
D 2 = y 3 , D 3 = 40 y 1 y 3 12 y 3 3 45 y 2 2 , D 4 = 12 y 3 4 y 1 4 y 3 3 y 2 2 + 117 y 3 y 1 y 2 2 88 y 1 2 y 3 2 40 y 2 y 0 y 3 2 27 y 2 4 300 y 2 y 1 y 0 + 160 y 1 3 , D 5 = 1600 y 2 y 0 y 1 3 3750 y 3 y 2 y 0 3 + 2000 y 3 y 0 2 y 1 2 4 y 3 3 y 2 2 y 1 2 + 16 y 3 3 y 2 3 y 0 900 y 1 y 0 2 y 3 3 + 825 y 3 2 y 2 2 y 0 2 + 144 y 3 y 2 2 y 1 3 + 2250 y 1 y 2 2 y 0 2 + 16 y 3 4 y 1 3 + 108 y 3 5 y 0 2 128 y 1 4 y 3 2 27 y 1 2 y 2 4 + 108 y 0 y 2 5 + 256 y 1 5 + 3125 y 0 4 72 y 1 y 0 y 2 y 3 4 + 560 y 0 y 2 y 1 2 y 3 2 630 y 3 y 1 y 0 y 2 3 , E 2 = 160 y 1 2 y 3 3 + 900 y 2 2 y 1 2 48 y 1 y 3 5 + 60 y 1 y 3 2 y 2 2 + 1500 y 3 y 2 y 1 y 0 + 16 y 2 2 y 3 4 1100 y 2 y 0 y 3 3 + 625 y 0 2 y 3 2 3375 y 0 y 2 3 , F 2 = 3 y 2 2 8 y 1 y 3 .
Case 1.
D 5 = 0 , D 4 = 0 , D 3 > 0 , E 2 0 , and F ( f ) = ( f δ 1 ) 2 ( f δ 2 ) 2 ( f δ 3 ) . When f > δ 3 , if δ 3 > δ 1 , δ 3 > δ 2 , we obtain
± ( ( A 5 55 k 2 ) 1 10 ξ ξ 0 ) = 2 δ 1 δ 2 ( δ 3 δ 1 arctan ( A 5 55 k 2 ) 1 10 P 1 δ 3 δ 3 δ 1 δ 3 δ 2 arctan ( A 5 55 k 2 ) 1 10 P 1 δ 3 δ 3 δ 2 ) ,
if δ 3 > δ 1 , δ 3 < δ 2 , we obtain
± ( ( A 5 55 k 2 ) 1 10 ξ ξ 0 ) = 2 δ 1 δ 2 ( δ 3 δ 1 arctan ( A 5 55 k 2 ) 1 10 P 1 δ 3 δ 3 δ 1 1 δ 2 δ 3 ln | ( A 5 55 k 2 ) 1 10 P 1 δ 3 δ 2 δ 3 ( A 5 55 k 2 ) 1 10 P 1 δ 3 + δ 2 δ 3 | ) ;
if δ 3 < δ 1 , δ 3 > δ 2 , we obtain
± ( ( A 5 55 k 2 ) 1 10 ξ ξ 0 ) = 2 δ 1 δ 2 ( δ 3 δ 2 arctan ( A 5 55 k 2 ) 1 10 P 1 δ 3 δ 3 δ 2 + 1 2 δ 1 δ 3 ln | ( A 5 55 k 2 ) 1 10 P 1 δ 3 δ 1 δ 3 ( A 5 55 k 2 ) 1 10 P 1 δ 3 + δ 1 δ 3 | ) ;
if δ 3 < δ 1 , δ 3 < δ 2 , we obtain
± ( ( A 5 55 k 2 ) 1 10 ξ ξ 0 ) = 2 δ 1 δ 2 ( 1 2 δ 1 δ 3 ln | ( A 5 55 k 2 ) 1 10 P 1 δ 3 δ 1 δ 3 ( A 5 55 k 2 ) 1 10 P 1 δ 3 + δ 1 δ 3 | 1 2 δ 2 δ 3 ln | ( A 5 55 k 2 ) 1 10 P 1 δ 3 δ 2 δ 3 ( A 5 55 k 2 ) 1 10 P 1 δ 3 + δ 2 δ 3 | ) ,
where δ 1 , δ 2 , and δ 3 are real numbers.
Case 2.
D 5 = 0 , D 4 = 0 , D 3 = 0 , D 2 0 , F 2 0 , and F ( f ) = ( f δ 1 ) 3 ( f δ 2 ) 2 . When f > δ 1 , if δ 1 > δ 2 , we obtain
± ( ( A 5 55 k 2 ) 1 10 ξ ξ 0 ) = 2 δ 1 δ 2 ( 1 ( A 5 55 k 2 ) 1 10 P 1 δ 1 δ 1 δ 2 arctan ( A 5 55 k 2 ) 1 10 P 1 δ 1 δ 1 δ 2 ) ;
if δ 1 < δ 2 , we obtain
± ( ( A 5 55 k 2 ) 1 10 ξ ξ 0 ) = 2 δ 1 δ 2 ( 1 ( A 5 55 k 2 ) 1 10 P 1 δ 1 1 2 δ 2 δ 1 ln | ( A 5 55 k 2 ) 1 10 P 1 δ 1 δ 2 δ 1 ( A 5 55 k 2 ) 1 10 P 1 δ 1 + δ 2 δ 1 | ) ,
where δ 1 and δ 2 are real numbers.
Case 3.
D 5 = 0 , D 4 = 0 , D 3 = 0 , D 2 0 , F 2 = 0 , and we have F ( f ) = ( f δ 1 ) 4 ( f δ 2 ) . When f > δ 1 , if δ 1 < δ 2 , we obtain
± ( ( A 5 55 k 2 ) 1 10 ξ ξ 0 ) = 2 δ 1 δ 2 ( ( A 5 55 k 2 ) 1 10 P 1 δ 2 2 ( ( A 5 55 k 2 ) 1 10 P 1 δ 1 ) 1 2 δ 1 δ 2 arctan ( A 5 55 k 2 ) 1 10 P 1 δ 2 δ 2 δ 1 ) ;
if δ 1 > δ 2 , we obtain
± ( ( A 5 55 k 2 ) 1 10 ξ ξ 0 ) = 2 δ 1 δ 2 ( ( A 5 55 k 2 ) 1 10 P 1 δ 2 2 ( ( A 5 55 k 2 ) 1 10 P 1 δ 1 ) 1 4 δ 1 δ 2 ln | ( A 5 55 k 2 ) 1 10 P 1 δ 2 δ 1 δ 2 ( A 5 55 k 2 ) 1 10 P 1 δ 2 + δ 1 δ 2 | ) ,
where δ 1 and δ 2 are real numbers.
Case 4.
D 5 = 0 , D 4 = 0 , D 3 = 0 , D 2 = 0 , and F ( f ) = ( f δ 1 ) 5 . When f > δ 1 , we obtain
P 1 = { ( A 5 55 k 2 ) 1 10 [ ( 3 2 ( ( A 5 55 k 2 ) 1 10 ξ ξ 0 ) ) 3 2 + δ 1 ] } 1 2 ,
where δ 1 is a real number.
Case 5.
D 5 = 0 , D 4 = 0 , D 3 < 0 , E 2 0 , and F ( f ) = ( f δ 1 ) ( f 2 + m f + n ) 2 . When f > δ 1 , we obtain
± ( ( A 5 55 k 2 ) 1 10 ξ ξ 0 ) = 2 σ 4 n m 2 ( cos ψ arctan 2 σ sin ψ ( A 5 55 k 2 ) 1 10 P 1 δ 1 ( A 5 55 k 2 ) 1 10 P 1 δ 1 σ 2 + sin ψ 2 ln | ( A 5 55 k 2 ) 1 10 P 1 δ 1 σ 2 2 σ cos ψ ( A 5 55 k 2 ) 1 10 P 1 δ 1 ( A 5 55 k 2 ) 1 10 P 1 δ 1 σ 2 + 2 σ cos ψ ( A 5 55 k 2 ) 1 10 P 1 δ 1 | ) ,
where δ 1 is a real number, m 2 4 n < 0 , σ = ( δ 1 2 + m δ 1 + n ) 1 4 , and ψ = 1 2 arctan 4 n m 2 2 δ 1 m .
Case 6.
D 5 = 0 , D 4 > 0 , and F ( f ) = ( f δ 1 ) 2 ( f δ 2 ) ( f δ 3 ) ( f δ 4 ) . When δ 2 > δ 3 > δ 4 , we obtain
± ( ( A 5 55 k 2 ) 1 10 ξ ξ 0 ) = 2 ( δ 1 δ 3 ) δ 3 δ 4 { F ( ψ , k ) δ 2 δ 3 δ 2 δ 1 Π ( ψ , δ 2 δ 3 δ 2 δ 1 , k ) } ,
where δ 1 , δ 2 , δ 3 , and δ 4 are real numbers, and δ 2 > δ 2 > δ 3 , F ( ψ , k ) = 0 ψ d φ 1 k 2 sin 2 φ , and Π ( ψ , n , k ) = 0 ψ d φ ( 1 + n sin 2 φ ) 1 k 2 sin 2 φ .
Case 7.
D 5 = 0 , D 4 = 0 , D 3 < 0 , E 2 = 0 , and F ( f ) = ( f δ 1 ) 3 ( ( f δ 2 ) 2 + δ 3 2 ) . When f > δ 1 , if δ 1 δ 2 + δ 3 , we obtain
± ( ( A 5 55 k 2 ) 1 10 ξ ξ 0 ) = tan θ + cot θ 2 ( δ 3 tan θ δ 2 δ 1 ) δ 3 sin 3 2 θ F ( ψ , k ) δ 3 tan θ + δ 3 cot θ δ 3 cot θ + δ 2 + δ 1 × { tan θ + δ 2 + δ 1 ( δ 3 cot θ + δ 2 δ 1 ) sin ψ 1 k 2 sin 2 ψ + F ( ψ , k ) E ( ψ , k ) } ;
if δ 1 = δ 2 + δ 3 , we obtain
± ( ( A 5 55 k 2 ) 1 10 ξ ξ 0 ) = sin 3 2 θ 4 δ 3 3 ( 1 k arcsin ( k sin ψ ) F ( ψ , k ) ) ,
where δ 1 , δ 2 , and δ 3 are real numbers, tan 2 θ = δ 3 δ 1 δ 2 , k = sin θ ( 0 < θ < π 2 ) , and E ( ψ , k ) = 0 ψ 1 k 2 sin 2 φ d φ .
Case 8.
D 5 = 0 , D 4 < 0 , and F ( f ) = ( f δ 1 ) 2 ( f δ 2 ) ( ( f δ 3 ) 2 + δ 4 2 ) . When f > δ 2 , if δ 1 δ 3 δ 4 tan θ , δ 1 δ 3 + δ 4 cot θ , we obtain
± ( ( A 5 55 k 2 ) 1 10 ξ ξ 0 ) = tan θ + cot θ 2 ( δ 4 tan θ δ 3 δ 1 ) δ 4 sin 3 2 θ F ( ψ , k ) δ 4 tan θ + δ 4 cot θ δ 4 cot θ + δ 3 + δ 1 × { tan θ + δ 3 + δ 1 ( δ 4 cot θ + δ 3 δ 1 ) sin ψ 1 k 2 sin 2 ψ + F ( ψ , k ) E ( ψ , k ) } ;
if δ 1 = δ 3 δ 4 tan θ , we obtain
± ( ( A 5 55 k 2 ) 1 10 ξ ξ 0 ) = sin 3 2 θ 4 δ 4 3 ( 1 k arcsin ( k sin ψ ) F ( ψ , k ) ) ;
if δ 1 = δ 3 + δ 4 cot θ , we obtain
± ( ( A 5 55 k 2 ) 1 10 ξ ξ 0 ) = sin 3 2 θ 4 δ 4 3 ( F ( ψ , k ) 1 1 k 2 ln 1 k 2 sin 2 ψ + 1 k 2 sin ψ cos ψ ) ,
where δ 1 , δ 2 , δ 3 , and δ 4 are real numbers, tan 2 θ = δ 4 δ 2 δ 3 , and k = sin θ ( 0 < θ < π 2 ) .
When D 5 = 0 , D 4 = 0 , D 3 > 0 , and E 2 = 0 ; D 5 > 0 , D 4 > 0 , D 3 > 0 , and D 2 > 0 ; D 5 < 0 ; and D 5 > 0 and D 4 0 or D 3 0 or D 2 0 , the solutions of these four cases can be structured by Legendre elliptic functions or hyperelliptic integral or hyperelliptic functions.

3.4. Quadratic–Cubic Law

In this case, the model is
i q t + i a 1 r x x x + b 1 r x x x x + c 1 q | q | 2 + | r | 2 + q r + q r + ( d 1 | q | 2 + f 1 | r | 2 ) q + p 1 r 2 q + i α q x + β 1 r = 0 ,
i r t + i a 2 q x x x + b 2 q x x x x + c 2 q | r | 2 + | q | 2 + q r + q r + ( d 2 | r | 2 + f 2 | q | 2 ) r + p 2 q 2 r + i α r x + β 2 q = 0 .
Putting Equations (10) and (11) into Equations (108) and (109) provides us with the auxiliary equations
3 k 2 P l ¯ ( κ a l 2 κ 2 b l ) + P l ˜ ( κ 3 a l + κ 4 b l + β l ) + k 4 b l P l ˜
+ P l ( c l ( P l ¯ + P l ) + f l P l ˜ 2 + p l P l ˜ 2 + α κ ω ) + d l P l 3 = 0 ,
k 3 P l ˜ ( a l 4 κ b l ) + k P l ˜ ( 4 κ 3 b l 3 κ 2 k a l ) + k ( α v ) P l = 0 .
Taking
P 2 = χ P 1 ,
Equations (110) and (111) become
3 χ κ k 2 P 1 ( a 1 2 b 1 κ ) + P 1 ( a 1 χ κ 3 + α κ
+ b 1 χ κ 4 + β 1 χ ω ) + b 1 χ k 4 P 1 + ( χ + 1 ) c 1 P 1 2 + P 1 3 ( d 1 + χ 2 f 1 + χ 2 p 1 ) = 0 ,
χ k 2 P 1 ( a 1 4 b 1 κ ) + P 1 ( 3 a 1 χ κ 2 + 4 b 1 χ κ 3 + ( α v ) ) = 0 ,
by virtue of the restrictions
c 1 = χ c 2 , d 1 + χ 2 f 1 + χ 2 p 1 = χ 3 d 2 + χ f 2 + χ p 2 , a 1 χ κ 3 + α κ + b 1 χ κ 4 + β 1 χ ω = α χ κ a 2 κ 3 + b 2 κ 4 + β 2 χ ω , χ ( a 1 2 b 1 κ ) = a 2 2 b 2 κ , b 1 χ = b 2 .
Equation (114) exposes the velocity
v = 3 a 1 χ κ 2 + α 1 + 4 b 1 χ κ 3 ,
along with the constraints
α 2 χ 3 a 2 κ 2 + 4 b 2 κ 3 = 3 a 1 χ 2 κ 2 + α 1 χ + 4 b 1 χ 2 κ 3 ,
a l = 4 b l κ ,
while Equation (113) becomes
A 1 P 1 + A 3 P 1 3 + A 4 P 1 2 + A 2 P 1 + k 2 P 1 = 0 ,
where
A 1 = 3 χ κ k 2 ( a 1 2 b 1 κ ) b 1 χ k 2 , A 2 = a 1 χ κ 3 + α κ + b 1 χ κ 4 + β 1 χ ω b 1 χ k 2 , A 3 = d 1 + χ 2 f 1 + χ 2 p 1 b 1 χ k 2 , A 4 = ( χ + 1 ) c 1 b 1 χ k 2 .
By virtue of the balance procedure in (119), Equation (5) becomes
( P 1 ) 2 = 2 s 2 3 P 1 3 + s 1 P 1 2 + 2 s 0 P 1 + s ,
where
s 2 = ( 3 A 3 10 k 2 ) 1 2 , s 1 = A 1 5 k 2 A 4 5 k 2 ( 3 A 3 10 k 2 ) 1 2 , s 0 = ( 2 A 1 2 75 k 4 A 2 6 k 2 + A 4 2 45 k 2 A 3 + A 1 A 4 50 k 4 ( 3 A 3 10 k 2 ) 1 2 ) ( 3 A 3 10 k 2 ) 1 2 , s = ( 4 A 1 3 A 3 A 4 3 A 3 ( 3 A 3 10 k 2 ) 1 2 ) ( 2 A 1 2 75 k 4 A 2 6 k 2 + A 4 2 45 k 2 A 3 + A 1 A 4 50 k 4 ( 3 A 3 10 k 2 ) 1 2 ) .
We rewrite Equation (121) as
± ( 2 A 3 15 k 2 ) 1 4 ( ξ 1 ξ 0 ) = d P 1 F ( P 1 ) ,
where
F ( P 1 ) = P 1 3 + j 2 P 1 2 + j 1 P 1 + j 0 ,
and
j 2 = 3 A 1 10 k 2 ( 3 A 3 10 k 2 ) 1 2 + A 4 A 3 , j 1 = 10 k 2 A 3 ( 2 A 1 2 75 k 4 A 2 6 k 2 + A 4 2 45 k 2 A 3 + A 1 A 4 50 k 4 ( 3 A 3 10 k 2 ) 1 2 ) , j 0 = ( 2 A 1 A 3 ( 3 A 3 10 k 2 ) 1 2 + 10 k 2 A 4 6 A 3 2 ) ( 2 A 1 2 75 k 4 A 2 6 k 2 + A 4 2 45 k 2 A 3 + A 1 A 4 50 k 4 ( 3 A 3 10 k 2 ) 1 2 ) .
We consider the discriminant system
Δ = 27 ( 2 j 2 3 27 + j 0 j 1 j 2 3 ) 2 4 ( j 1 j 2 2 3 ) 3 , D 1 = j 1 j 2 2 3 .
Case 1.
Δ = 0 , D 1 < 0 , and F ( P 1 ) = ( P 1 ι 1 ) 2 ( P 1 ι 2 ) . When P 1 > ι 2 , if ι 1 > ι 2 , the dark and singular solitons are
q = [ ( ι 1 ι 2 ) tanh 2 ( ι 1 ι 2 2 ( 2 A 3 15 k 2 ) 1 4 ( ξ 1 ξ 0 ) + ι 2 ] e i ( κ x + ω t + θ ) ,
q = [ ( ι 1 ι 2 ) coth 2 ( ι 1 ι 2 2 ( 2 A 3 15 k 2 ) 1 4 ( ξ 1 ξ 0 ) + ι 2 ] e i ( κ x + ω t + θ ) ,
and if ι 1 < ι 2 , the singular periodic solution is
q = [ ( ι 2 ι 1 ) tan 2 ( ι 2 ι 1 2 ( 2 A 3 15 k 2 ) 1 4 ( ξ 1 ξ 0 ) + ι 2 ] e i ( κ x + ω t + θ ) ,
where ι 1 and ι 2 are real numbers.
Case 2.
Δ = 0 , D 1 = 0 , and F ( P 1 ) = ( P 1 ι 1 ) 3 . The solution is
q = [ 4 ( 2 A 3 15 k 2 ) 1 2 ( ξ 1 ξ 0 ) 2 + ι 1 ] e i ( κ x + ω t + θ ) ,
where ι 1 is a real number.
Case 3.
Δ > 0 , D 1 < 0 , and F ( P 1 ) = ( P 1 ι 1 ) ( P 1 ι 2 ) ( P 1 ι 3 ) . When ι 1 < ι 2 < ι 3 , if ι 1 < P 1 < ι 2 , the solution is
q = [ ι 1 + ( ι 2 ι 1 ) s n 2 ( ι 3 ι 1 2 ( 2 A 3 15 k 2 ) 1 4 ( ξ 1 ξ 0 ) , m ) ] ] e i ( κ x + ω t + θ ) ,
and if P 1 > ι 3 , the solution is
q = [ ι 3 ι 2 s n 2 ( ι 3 ι 1 2 ( 2 A 3 15 k 2 ) 1 4 ( ξ 1 ξ 0 ) , m ) c n 2 ( ι 3 ι 1 2 ( 2 A 3 15 k 2 ) 1 4 ( ξ 1 ξ 0 ) , m ) ] e i ( κ x + ω t + θ ) ,
where ι 1 , ι 2 , and ι 3 are real numbers, and m 2 = ι 2 ι 1 ι 3 ι 1 .
Case 4.
Δ < 0 , and F ( P 1 ) = ( P 1 ι 1 ) ( P 1 2 + l P 1 + j ) , l 2 4 j < 0 . The solution is
q = [ ι 1 ι 1 2 + l ι 1 + j + 2 ι 1 2 + l ι 1 + j 1 + c n ( ( ι 1 2 + l ι 1 + j ) 1 4 ( 2 A 3 15 k 2 ) 1 4 ( ξ 1 ξ 0 ) , m ) ] e i ( κ x + ω t + θ ) ,
where ι 1 , l, and j are real numbers, and m 2 = 1 2 ( 1 ι 1 + l 2 ι 1 2 + l ι 1 + j ) .

3.5. Parabolic-Nonlocal Law

In this case, the model is
i q t + i a 1 r x x x + b 1 r x x x x + ( c 1 | q | 2 + d 1 | r | 2 ) x x q + ( ξ 1 | q | 4 + η 1 | q | 2 | r | 2 + ζ 1 | r | 4 ) q + i α 1 q x + β 1 r = 0 ,
i r t + i a 2 q x x x + b 2 q x x x x + ( c 2 | r | 2 + d 2 | q | 2 ) x x r + ( ξ 2 | r | 4 + η 2 | r | 2 | q | 2 + ζ 2 | q | 4 ) r + i α 2 r x + β 2 q = 0 .
Inserting Equations (10) and (11) into Equations (134) and (135) provides us with the ancillary equations
P l ˜ ( κ 3 a l + κ 4 b l + β l ) + η l P l 3 P l ˜ 2 + ξ l P l 5 + 2 k 2 c l P l 2 P l + 3 κ k 2 a l P l ˜ 6 κ 2 k 2 b l P l ˜ + k 4 b l P l ˜ ( 4 ) + P l ( 2 k 2 d l P l ˜ 2 + 2 k 2 d l P l ˜ P l ˜ + ζ l P l ˜ 4 + α 1 κ + 2 k 2 c l P l 2 ω ) = 0 ,
k 3 P 2 ( a 1 4 b 1 κ ) + k P 2 ( 4 b 1 κ 3 P 2 3 a 1 κ 2 ) + k P 1 ( α 1 v ) = 0 ,
Setting
P 2 = χ P 1 ,
Equations (136) and (137) become
P 1 5 ( χ 4 ζ 1 + χ 2 η 1 + ξ 1 ) + P 1 ( a 1 χ κ 3 + α 1 κ + b 1 χ κ 4 + β 1 χ + 2 c 1 k 2 P 1 2 + 2 χ 2 d 1 k 2 P 1 2 ω ) + χ k 2 P 1 ( 3 a 1 κ 6 b 1 κ 2 ) + b 1 χ k 4 P 1 + 2 k 2 P 1 2 P 1 ( c 1 + χ 2 d 1 ) = 0 ,
and
k ( a 1 ( χ k 2 P 1 3 χ κ 2 P 1 ) + 4 b 1 κ ( χ κ 2 P 1 χ k 2 P 1 ) + P 1 ( α 1 v ) ) = 0 ,
by virtue of the constraints
χ 4 ζ 1 + χ 2 η 1 + ξ 1 = χ ( χ 4 ξ 2 + χ 2 η 2 + ζ 2 ) , a 1 χ κ 3 + α 1 κ + b 1 χ κ 4 + β 1 χ ω = α 2 χ κ a 2 κ 3 + b 2 κ 4 + β 2 χ ω , c 1 + χ 2 d 1 = χ ( c 2 χ 2 + d 2 ) , χ ( 3 a 1 κ 6 b 1 κ 2 ) = 3 a 2 κ 6 b 2 κ 2 , b 1 χ = b 2 .
Equation (140) gives way to the velocity
v = 3 a 1 χ κ 2 + α 1 + 4 b 1 χ κ 3 ,
with the usage of the conditions
α 2 χ 3 a 2 κ 2 + 4 b 2 κ 3 = 3 a 1 χ 2 κ 2 + α 1 χ + 4 b 1 χ 2 κ 3 ,
a l = 4 b l κ ,
while Equation (139) becomes
A 2 ( P 1 P 1 2 + P 1 2 P 1 ) + A 1 P 1 + A 4 P 1 5 + A 3 P 1 + k 2 P 1 = 0 ,
where
A 1 = 3 χ κ k 2 ( a 1 2 b 1 κ ) b 1 χ k 2 , A 2 = 2 k 2 ( c 1 + χ 2 d 1 ) b 1 χ k 2 , A 3 = a 1 χ κ 3 + α 1 κ + b 1 χ κ 4 + β 1 χ ω b 1 χ k 2 , A 4 = χ 4 ζ 1 + χ 2 η 1 + ξ 1 b 1 χ k 2 .
By virtue of the balance procedure in (145), Equation (5) becomes
( P 1 ) 2 = s 3 2 P 1 4 + 2 s 2 3 P 1 3 + s 1 P 1 2 + 2 s 0 P 1 + s ,
where
s 3 = 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 24 k 2 , s 2 = 0 , s 1 = ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 ) A 1 2 k 2 ( 5 ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 ) + 24 A 2 ) , s 0 = 0 , s = ( 9 ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 ) 2 A 1 2 + 48 ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 ) A 1 2 A 2 100 k 2 ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 ) 2 A 3 960 k 2 t ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 ) A 2 A 3 2304 k 2 A 2 2 A 3 ) / ( k 2 ( ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 ) + 4 A 2 ) ( 5 ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 ) + 24 A 2 ) ) 2 ) .
With the usage of the relations
U = ( 2 s 3 ) 1 3 P 1 2 , ξ 1 = ( 2 s 3 ) 1 3 ξ ,
Equation (147) simplifies to
( U ξ 1 ) 2 = U 3 + ς 2 U 2 + ς 1 U ,
where
ς 2 = ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 2 3 ( 2 A 1 ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 ) k 2 ( 5 ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 ) + 24 A 2 ) ) , ς 1 = ( 36 ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 ) 2 A 1 2 + 192 ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 ) A 1 2 A 2 400 k 2 ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 ) 2 A 3 3840 k 2 t ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 ) A 2 A 3 9216 k 2 A 2 2 A 3 ) / ( k 2 ( ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 ) + 4 A 2 ) ( 5 ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 ) + 24 A 2 ) ) 2 ) ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 1 3 .
We rewrite Equation (150) as
± ( ξ 1 ξ 0 ) = d U F ( U ) ,
where
F ( U ) = U ( U 2 + ς 2 U + ς 1 ) .
We consider the discriminant system
Δ = ς 2 2 4 ς 1 .
Case 1.
Δ = 0 . For U > 0 , if ς 2 < 0 , we have the dark and singular solitons
q = { ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 1 3 ( ς 2 2 tanh 2 ( 1 2 ς 2 2 ( ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 1 3 ξ ξ 0 ) ) ) } 1 2 e i ( κ x + ω t + θ ) ,
q = { ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 1 3 ( ς 2 2 coth 2 ( 1 2 ς 2 2 ( ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 1 3 ξ ξ 0 ) ) ) } 1 2 e i ( κ x + ω t + θ ) ;
if ς 2 > 0 , we have the singular periodic solution
q = { ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 1 3 ( ς 2 2 tan 2 ( 1 2 ς 2 2 ( ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 1 3 ξ ξ 0 ) ) ) } 1 2 e i ( κ x + ω t + θ ) ;
if ς 2 = 0 , we have
q = { 4 ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 1 3 ( ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 1 3 ξ ξ 0 ) 2 } 1 2 e i ( κ x + ω t + θ ) .
Case 2.
Δ > 0 , and ς 1 = 0 . For U > ς 2 , if ς 2 > 0 , we have the dark and singular solitons
q = { ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 1 3 ( ς 2 2 tanh 2 ( 1 2 ς 2 2 ( ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 1 3 ξ ξ 0 ) ) ς 2 ) } 1 2 e i ( κ x + ω t + θ ) ,
q = { ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 1 3 ( ς 2 2 coth 2 ( 1 2 ς 2 2 ( ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 1 3 ξ ξ 0 ) ) ς 2 ) } 1 2 e i ( κ x + ω t + θ ) ;
if ς 2 < 0 , we have the singular periodic solution
q = { ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 1 3 ( ς 2 2 tan 2 ( 1 2 ς 2 2 ( ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 1 3 ξ ξ 0 ) ) ς 2 ) } 1 2 e i ( κ x + ω t + θ ) .
Case 3.
Δ > 0 , and ς 1 0 . Suppose that γ 1 < γ 2 < γ 3 , one of them is zero, and the other two are roots of U 2 + ς 2 U + ς 1 . For γ 1 < U < γ 2 , we have
q = { ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 1 3 [ γ 1 + ( γ 2 γ 1 ) s n 2 ( γ 3 γ 1 2 ( ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 1 3 ξ ξ 0 ) , m ) ] } 1 2 × e i ( κ x + ω t + θ ) ,
and for U > γ 3 , we have
q = { ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 1 3 [ γ 3 γ 2 s n 2 ( γ 3 γ 1 2 ( ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 1 3 ξ ξ 0 ) , m ) c n 2 ( γ 3 γ 1 2 ( ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 1 3 ξ ξ 0 ) , m ) ] } 1 2 e i ( κ x + ω t + θ ) ,
where m 2 = γ 2 γ 1 γ 3 γ 1 .
Case 4.
Δ < 0 , for U > 0 , we have
q = { ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 1 3 ( 2 ς 1 1 + c n ( ς 1 1 4 ( ( 3 A 2 ± 3 3 A 2 2 32 k 2 A 4 12 k 2 ) 1 3 ξ ξ 0 ) , m ) ς 1 ) } 1 2 e i ( κ x + ω t + θ ) ,
where m 2 = 1 ς 2 2 ς 1 2 . We have obtained the exact solutions q ( x , t ) in this section, so according to the relation r = χ q , the solutions r ( x , t ) can be obtained. We omit them.

4. Conclusions

The current paper retrieved CQ dark and singular soliton solutions in fiber Bragg gratings. Such solitons are a new kind of soliton, known as the Bragg soliton or the gap soliton, which can form in nonlinear media whose refractive index varies weakly in a periodic fashion along its length [29,30]. The study was conducted with five forms of self-phase modulation. The results are very useful when dark soliton dynamics are to be handled in detail. The integration scheme that yielded such dark and singular solitons was the trial equation approach. Visibly, this approach had a shortcoming. This approach failed to reveal the much-needed bright soliton solutions that are needed in fiber optic communication dynamics.
In future work, the model will be addressed from a numerical perspective with the usage of the Adomian Decomposition approach, the Laplace–Adomian decomposition method, the finite element method, the finite difference method, and other relevant approaches.
Apart from the regime of a deterministic system, it is also very important to explore the world of stochasticity where the random noise could be a detrimental factor. In this case, later, the model will be revisited with an additive stochastic perturbation term. This would be Gaussian noise; therefore, the corresponding dynamical system of the soliton parameters will be formulated in presence of noise. The corresponding Langevin equation will subsequently be revealed. Upon solving this Langevin equation, the mean free velocity will be computed. The results should align with the previously published results [31].
Multiplicative white noise will also be considered later as a derivative of the Weiner process. This will lead to the analysis of the model with the aid of Ito Calculus, which will lead to the stochastic effect only in the phase components of the solitons. The remaining physical factors of the solitons will remain unaffected. The results should align along the lines of the previously reported results [32].

Author Contributions

Conceptualization, M.-Y.W.; methodology, A.B.; software, Y.Y.; writing—original draft preparation, L.M.; writing—review and editing, S.M.; project administration, H.M.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors thank the anonymous referees whose comments helped to improve this paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Kan, K.; Kudryashov, N. Solitary waves for the sixth order nonlinear differential equation in optical fiber Bragg grating. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2022; Volume 2425, p. 340008. [Google Scholar]
  2. Kan, K.V.; Kudryashov, N.A. Solitary waves described by a high-order system in optical fiber Bragg gratings with arbitrary refractive index. Math. Methods Appl. Sci. 2022, 45, 1072–1079. [Google Scholar] [CrossRef]
  3. Kudryashov, N.A. Periodic and solitary waves in optical fiber Bragg gratings with dispersive reflectivity. Chin. J. Phys. 2020, 66, 401–405. [Google Scholar] [CrossRef]
  4. Zayed, E.M.; Shohib, R.M.; Alngar, M.E. Solitons in optical fiber Bragg gratings for perturbed NLSE having cubic–quartic dispersive reflectivity with parabolic-nonlocal combo law of refractive index. Optik 2021, 243, 167406. [Google Scholar] [CrossRef]
  5. Zayed, E.M.; Shohib, R.; Alngar, M.E. Cubic-quartic optical solitons in Bragg gratings fibers for NLSE having parabolic non-local law nonlinearity using two integration schemes. Opt. Quantum Electron. 2021, 53, 452. [Google Scholar] [CrossRef]
  6. Zayed, E.M.; Nofal, T.A.; Gepreel, K.A.; Shohib, R.; Alngar, M.E. Cubic-quartic optical soliton solutions in fiber Bragg gratings with Lakshmanan–Porsezian–Daniel model by two integration schemes. Opt. Quantum Electron. 2021, 53, 249. [Google Scholar] [CrossRef]
  7. Arnous, A.H. Optical solitons to the cubic quartic Bragg gratings with anti-cubic nonlinearity using new approach. Optik 2022, 251, 168356. [Google Scholar] [CrossRef]
  8. Hossain, M.B.; Atai, J. Collisions of Moving Gap Solitons in a Nonlinear Dual-Core System with a Uniform Bragg Grating and a Bragg Grating with Dispersive Reflectivity. In Frontiers in Optics; Optical Society of America: Washington, DC, USA, 2021; p. JTh5A-40. [Google Scholar]
  9. Saha, S.; Atai, J. Interaction of solitons in a semilinear dual-core Bragg grating with phase mismatch. In Laser Science; Optica Publishing Group: Hong Kong, China, 2021; p. JTh5A-41. [Google Scholar]
  10. Islam, M.J.; Atai, J. Stability of moving Bragg solitons in a semilinear coupled system with cubic–quintic nonlinearity. J. Mod. Opt. 2021, 68, 365–373. [Google Scholar] [CrossRef]
  11. Akter, A.; Atai, J. Collision Dynamics of Solitons in a Coupled Nonuniform Fiber Bragg Gratings with Cubic-Quintic Nonlinearity. In Frontiers in Optics; Optical Society of America: Washington, DC, USA, 2020; p. JW6A-4. [Google Scholar]
  12. Hossain, B.; Atai, J. Interactions of Bragg Solitons in a Dual-Core System with a Uniform Bragg Grating and a Bragg Grating with Dispersive Reflectivity. In Laser Science; Optical Society of America: Washington, DC, USA, 2020; p. JW6B-2. [Google Scholar]
  13. Ahmed, T.; Atai, J. Soliton-soliton dynamics in a dual-core system with separated nonlinearity and nonuniform Bragg grating. Nonlinear Dyn. 2019, 97, 1515–1523. [Google Scholar] [CrossRef]
  14. Anam, N.; Ahmed, T.; Atai, J. Bragg Grating Solitons in a Dual-core System with Separated Bragg Grating and Cubic-quintic Nonlinearity. Photoptics 2019, 24–28. [Google Scholar] [CrossRef]
  15. Islam, M.J.; Atai, J. Collisions of Moving GAP Solitons in Coupled Bragg Gratings with Cubic-Quintic Nonlinearity. In Proceedings of the 2018 IEEE Photonics Conference (IPC), Reston, VA, USA, 30 September–4 October 2018; pp. 1–2. [Google Scholar]
  16. Islam, M.; Atai, J. Stability of moving gap solitons in linearly coupled Bragg gratings with cubic–quintic nonlinearity. Nonlinear Dyn. 2018, 91, 2725–2733. [Google Scholar] [CrossRef]
  17. Ahmed, T.; Atai, J. Bragg solitons in systems with separated nonuniform Bragg grating and nonlinearity. Phys. Rev. E 2017, 96, 032222. [Google Scholar] [CrossRef]
  18. Chowdhury, S.; Atai, J. Moving Bragg grating solitons in a semilinear dual-core system with dispersive reflectivity. Sci. Rep. 2017, 7, 4021. [Google Scholar] [CrossRef] [Green Version]
  19. Islam, M.J.; Atai, J. Moving Bragg Grating Solitons in a Grating-assisted Coupler with Cubic-Quintic Nonlinearity. In Proceedings of the International Conference on Photonics, Optics and Laser Technology, SCITEPRESS, Vila Nova de Gaia, Portugal, 27 February–1 March 2017; Volume 2, pp. 44–48. [Google Scholar]
  20. Islam, J.; Atai, J. Stability of Bragg grating solitons in a semilinear dual-core system with cubic–quintic nonlinearity. Nonlinear Dyn. 2017, 87, 1693–1701. [Google Scholar] [CrossRef]
  21. Wang, M.Y. Optical solitons with perturbed complex Ginzburg–Landau equation in kerr and cubic–quintic–septic nonlinearity. Results Phys. 2022, 33, 105077. [Google Scholar] [CrossRef]
  22. Liu, C.S. Trial equation method based on symmetry and applications to nonlinear equations arising in mathematical physics. Found. Phys. 2011, 41, 793–804. [Google Scholar] [CrossRef]
  23. Liu, C.S. Using trial equation method to solve the exact solutions for two kinds of KdV equations with variable coefficients. Acta Phys. Sin. 2005, 54, 4506–4510. [Google Scholar]
  24. Cheng-Shi, L. A new trial equation method and its applications. Commun. Theor. Phys. 2006, 45, 395. [Google Scholar] [CrossRef]
  25. Kai, Y.; Ji, J.; Yin, Z. Study of the generalization of regularized long-wave equation. Nonlinear Dyn. 2022, 107, 2745–2752. [Google Scholar] [CrossRef]
  26. Kai, Y.; Li, Y.; Huang, L. Topological properties and wave structures of Gilson–Pickering equation. Chaos Solitons Fractals 2022, 157, 111899. [Google Scholar] [CrossRef]
  27. Liu, C.s. Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations. Comput. Phys. Commun. 2010, 181, 317–324. [Google Scholar] [CrossRef]
  28. Wang, M.Y.; Biswas, A.; Yıldırım, Y.; Alshehri, H.M. Dispersive solitons in magneto-optic waveguides with Kudryashov’s form of self-phase modulation. Optik 2022, 269, 169860. [Google Scholar] [CrossRef]
  29. Triki, H.; Sun, Y.; Zhou, Q.; Biswas, A.; Yıldırım, Y.; Alshehri, H.M. Dark solitary pulses and moving fronts in an optical medium with the higher-order dispersive and nonlinear effects. Chaos Solitons Fractals 2022, 164, 112622. [Google Scholar] [CrossRef]
  30. Kivshar, Y.S.; Agrawal, G. Optical Solitons: From Fibers to Photonic Crystals; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
  31. Biswas, A. Stochastic perturbation of optical solitons in Schrödinger–Hirota equation. Opt. Commun. 2004, 239, 461–466. [Google Scholar] [CrossRef]
  32. Zayed, E.M.; Shohib, R.M.; Alngar, M.E. Dispersive optical solitons in magneto-optic waveguides with stochastic generalized Schrôdinger-Hirota equation having multiplicative white noise. Optik 2022, 271, 170069. [Google Scholar] [CrossRef]
Figure 1. Profile of a dark soliton in fiber Bragg gratings.
Figure 1. Profile of a dark soliton in fiber Bragg gratings.
Axioms 11 00640 g001
Figure 2. Profile of a singular soliton in fiber Bragg gratings.
Figure 2. Profile of a singular soliton in fiber Bragg gratings.
Axioms 11 00640 g002
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Wang, M.-Y.; Biswas, A.; Yıldırım, Y.; Alshehri, H.M.; Moraru, L.; Moldovanu, S. Optical Solitons in Fiber Bragg Gratings with Dispersive Reflectivity Having Five Nonlinear Forms of Refractive Index. Axioms 2022, 11, 640. https://doi.org/10.3390/axioms11110640

AMA Style

Wang M-Y, Biswas A, Yıldırım Y, Alshehri HM, Moraru L, Moldovanu S. Optical Solitons in Fiber Bragg Gratings with Dispersive Reflectivity Having Five Nonlinear Forms of Refractive Index. Axioms. 2022; 11(11):640. https://doi.org/10.3390/axioms11110640

Chicago/Turabian Style

Wang, Ming-Yue, Anjan Biswas, Yakup Yıldırım, Hashim M. Alshehri, Luminita Moraru, and Simona Moldovanu. 2022. "Optical Solitons in Fiber Bragg Gratings with Dispersive Reflectivity Having Five Nonlinear Forms of Refractive Index" Axioms 11, no. 11: 640. https://doi.org/10.3390/axioms11110640

APA Style

Wang, M.-Y., Biswas, A., Yıldırım, Y., Alshehri, H. M., Moraru, L., & Moldovanu, S. (2022). Optical Solitons in Fiber Bragg Gratings with Dispersive Reflectivity Having Five Nonlinear Forms of Refractive Index. Axioms, 11(11), 640. https://doi.org/10.3390/axioms11110640

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop