Cyclone Classification over the South Atlantic Ocean in Centenary Reanalysis
Abstract
:1. Introduction
2. Methodology
2.1. Study Area and Data
2.2. Cyclone Tracking
2.3. Cyclone Phase Space (CPS)
2.4. Criteria Used to Classify Cyclones
2.5. Analyses
3. Results and Discussions
3.1. Validation Period: 1979–2010
3.1.1. Climatology, Including All Cyclone Types
3.1.2. Trends and Interannual Variability
3.2. Cyclone’s Classification
3.2.1. Dispersion Analysis of the CPS Parameters
3.2.2. Separating the Cyclone’s Types
3.3. Hurricane Catarina
4. Conclusions
- Validation Period: 1979–2010
- Long Period Analysis: 1900–2010
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reboita, M.S.; Crespo, N.M.; da Rocha, R.P.; Gozzo, L.F. Synoptic-Scale Cyclones Affecting South America and the South Atlantic Ocean; ORE/Oxford: Oxford, UK, 2024; p. 1. [Google Scholar]
- Gan, M.A.; Rao, V.B. Surface Cyclogenesis over South America. Mon. Weather Rev. 1991, 119, 1293–1302. [Google Scholar] [CrossRef]
- Reboita, M.S.; da Rocha, R.P.; Ambrizzi, T.; Sugahara, S. South Atlantic Ocean Cyclogenesis Climatology Simulated by Regional Climate Model (RegCM3). Clim. Dyn. 2010, 35, 1331–1347. [Google Scholar] [CrossRef]
- Gramcianinov, C.B.; Hodges, K.I.; Camargo, R. The properties and genesis environments of South Atlantic cyclones. Clim. Dyn. 2019, 53, 4115–4140. [Google Scholar] [CrossRef]
- Gramcianinov, C.B.; Campos, R.M.; de Camargo, R.; Hodges, K.I.; Carlos, G.S.; da Silva Dias, P.L. Atlantic extratropical cyclone tracks in 41 years of ERA5 and CFSR/CFSv2 databases. Ocean Eng. 2020, 216. [Google Scholar] [CrossRef]
- de Jesus, E.M.; da Rocha, R.P.; Crespo, N.M. Multi-model climate projections of the main cyclogenesis hot-spots and associated winds over the eastern coast of South America. Clim. Dyn. 2021, 56, 537–557. [Google Scholar] [CrossRef]
- Evans, J.L.; Braun, A. A Climatology of Subtropical Cyclones in the South Atlantic. J. Clim. 2012, 25, 7328–7340. [Google Scholar] [CrossRef]
- Gozzo, L.F.; da Rocha, R.P.; Reboita, M.S.; Sugahara, S. Subtropical Cyclones over the Southwestern South Atlantic: Climatological Aspects and Case Study. J. Clim. 2014, 27, 8543–8562. [Google Scholar] [CrossRef]
- da Rocha, R.P.; Reboita, M.S.; Gozzo, L.F.; Dutra, L.M.M.; de Jesus, E.M. Subtropical cyclones over the oceanic basins: A review. Ann. N. Y. Acad. Sci. 2019, 1436, 138–156. [Google Scholar] [CrossRef]
- Reboita, M.S.; da Rocha, R.P.; Oliveira, D.M.d. Key Features and Adverse Weather of the Named Subtropical Cyclones over the Southwestern South Atlantic Ocean. Atmosphere 2019, 10, 6. [Google Scholar] [CrossRef]
- de Jesus, E.M.; da Rocha, R.P.; Crespo, N.M. Future climate trends of subtropical cyclones in the South Atlantic basin in an ensemble of global and regional projections. Clim. Dyn. 2022, 58, 1221–1236. [Google Scholar] [CrossRef]
- Brasiliense, C.S.; Dereczynski, C.P.; Satyamurty, P.; Chou, S.C.; da Silva Santos, V.R.; Calado, R.N. Synoptic analysis of an intense rainfall event in Paraíba do Sul river basin in southeast Brazil. Meteorol. Appl. 2018, 25, 66–77. [Google Scholar] [CrossRef]
- Dalagnol, R.; Gramcianinov, C.B.; Crespo, N.M.; Luiz, R.; Chiquetto, J.B.; Marques, M.T.; Neto, G.D.; de Abreu, R.C.; Li, S.; Lott, F.C.; et al. Extreme rainfall and its impacts in the Brazilian Minas Gerais state in January 2020: Can we blame climate change? Clim. Resil. Sustain. 2022, 1, e15. [Google Scholar] [CrossRef]
- Pérez-Alarcón, A.; Coll-Hidalgo, P.; Fernández-Alvarez, J.C.; Sorí, R.; da Rocha, R.P.; Reboita, M.S.; Nieto, R.; Gimeno, L. Quantifying the related precipitation and moisture sources in the lifecycle of subtropical cyclones in the South Atlantic basin. Q. J. R. Meteorol. Soc. 2024, 150, 2765–2782. [Google Scholar] [CrossRef]
- Pezza, A.B.; Simmonds, I. The first South Atlantic hurricane: Unprecedented blocking, low shear and climate change. Geophys. Res. Lett. 2005, 32, L15712. [Google Scholar] [CrossRef]
- Reboita, M.S.; Crespo, N.M.; Dutra, L.M.M.; Silva, B.A.; Capucin, B.C.; da Rocha, R.P. Iba: The first pure tropical cyclogenesis over the western South Atlantic Ocean. J. Geophys. Res. Atmos. 2021, 126, e2020JD033431. [Google Scholar] [CrossRef]
- Reboita, M.S.; Nogueira, N.C.d.O.; Gomes, I.B.D.S.; Palma, L.L.D.C.; da Rocha, R.P. Assessment of a Tropical Transition over the Southwestern South Atlantic Ocean: The Case of Cyclone Akará. J. Mar. Sci. Eng. 2024, 12, 1934. [Google Scholar] [CrossRef]
- McTaggart-Cowan, R.; Bosart, L.F.; Davis, C.A.; Atallah, E.H.; Gyakum, J.R.; Emanuel, K.A. Analysis of Hurricane Catarina (2004). Mon. Weather Rev. 2006, 134, 3029–3053. [Google Scholar] [CrossRef]
- Beven, J.L. A study of three “hybrid” storms. In Proceedings of the 22d Conference on Hurricanes and Tropical Meteorology, Fort Collins, CO, USA, 19–23 May 1997; American Meteorological Society: Boston, MA, USA, 1997; pp. 645–646. [Google Scholar]
- Hart, R.E. A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Weather Rev. 2003, 131, 585–616. [Google Scholar] [CrossRef]
- Davis, C.A.; Bosart, L.F. The TT problem: Forecasting the tropical transition of cyclones. Bull. Am. Meteorol. Soc. 2004, 85, 1657–1662. [Google Scholar]
- Davis, C.A.; Bosart, L.F. The formation of hurricane Humberto (2001): The importance of extra-tropical precursors. Q. J. R. Meteorol. Soc. 2006, 132, 2055–2085. [Google Scholar] [CrossRef]
- Chaboureau, J.P.; Pantillon, F.; Lambert, D.; Richard, E.; Claud, C. Tropical transition of a Mediterranean storm by jet crossing. Q. J. R. Meteorol. Soc 2012, 138, 596–611. [Google Scholar] [CrossRef]
- Bentley, A.M.; Keyser, D.; Bosart, L.F. A dynamically based climatology of subtropical cyclones that undergo tropical transition in the North Atlantic basin. Mon. Weather Rev. 2016, 144, 2049–2068. [Google Scholar] [CrossRef]
- Evans, C.; Wood, K.M.; Aberson, S.D.; Archambault, H.M.; Milrad, S.M.; Bosart, L.F.; Zhang, F. The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts. Mon. Weather Rev. 2017, 145, 4317–4344. [Google Scholar] [CrossRef]
- Calvo-Sancho, C.; González-Alemán, J.J.; Bolgiani, P.; Santos-Muñoz, D.; Farrán, J.I.; Martín, M.L. An environmental synoptic analysis of tropical transitions in the central and Eastern North Atlantic. Atmospheric Res. 2022, 278, 106353. [Google Scholar] [CrossRef]
- Guishard, M.P. Atlantic Subtropical Storms: Climatology and Characteristics. Ph.D. Thesis, College of Earth and Mineral Sciences, The Pennsylvania State University, University Park, PA, USA, 2006. [Google Scholar]
- Shapiro, M.A.; Keyser, E.D. Fronts, jet streams and the tropopause. In Extratropical Cyclones; The Erik Palmén Memorial Volume; Newton, C.W., Holopainen, E.O., Eds.; American Meteorological Society: Boston, MA, USA, 1990; pp. 167–191. [Google Scholar]
- Reboita, M.S.; Gozzo, L.F.; Crespo, N.M.; Custodio, M.S.; Lucyrio, V.; de Jesus, E.M.; da Rocha, R.P. From a Shapiro–Keyser extratropical cyclone to the subtropical cyclone Raoni: An unusual winter synoptic situation over the South Atlantic Ocean. Q. J. R. Meteorol. Soc. 2022, 148, 2991–3009. [Google Scholar] [CrossRef]
- de Jesus, E.M. Ciclones e Ciclones Subtropicais Sobre o Sudoeste do Oceano Atlântico Sul: Projeções Climáticas e Ventos Associados. Ph.D. Thesis, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, Brasil, 2020. [Google Scholar]
- Gray, W.M. Global View Of The Origin Of Tropical Disturbances And Storms. Mon. Weather Rev. 1968, 96, 669–700. [Google Scholar] [CrossRef]
- Yu, L.; Jin, X.; Weller, R.A. Multidecade Global Flux Datasets from the Objectively Analyzed Air-Sea Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables; OAFlux Project Technical Report; Woods Hole Oceanographic Institution: Falmouth, MA, USA, 2008; 64p. [Google Scholar]
- Wood, K.; Yanase, W.; Beven, J.; Camargo, S.J.; Courtney, J.B.; Fogarty, C.; Fukuda, J.; Kitabatake, N.; Kucas, M.; McTaggart-Cowan, R.; et al. Phase transitions between tropical, subtropical, and extratropical cyclones: A review from IWTC-10. Trop. Cyclone Res. Rev. 2024, 12, 294–308. [Google Scholar] [CrossRef]
- Marrafon, V.H.; Reboita, M.S.; da Rocha, R.P.; Crespo, N.M. Ciclones Extratropicais No Hemisfério Sul: Comparação entre Diferentes Reanálises. Rev. Bras. Climatol. 2021, 28, 48–73. [Google Scholar] [CrossRef]
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E.; Vose, R.S.; Rutledge, G.; Bessemoulin, P.; et al. The Twentieth Century Reanalysis Project. Q. J. R. Meteorol. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef]
- Poli, P.; Hersbach, H.; Dee, D.P.; Berrisford, P.; Simmons, A.J.; Vitart, F.; Laloyaux, P.; Tan, D.G.H.; Peubey, C.; Thépaut, J.-N.; et al. ERA-20C: An Atmospheric Reanalysis of the Twentieth Century. J. Clim. 2016, 29, 4083–4097. [Google Scholar] [CrossRef]
- Marrafon, V.H.; Reboita, M.S.; da Rocha, R.P.; de Jesus, E.M. Classificação dos tipos de ciclones sobre o Oceano Atlântico Sul em projeções com o RegCM4 E MCGs. Rev. Bras. Climatol. 2022, 30, 1–25. [Google Scholar] [CrossRef]
- Yanase, W.; Niino, H.; Hodges, K.; Kitabatake, N. Parameter spaces of environmental fields responsible for cyclone development from tropics to extratropics. J. Clim. 2014, 27, 652–671. [Google Scholar] [CrossRef]
- Cavicchia, L.A.; Pepler, A.; Dowdy, K.W. A Physically Based Climatology of the Occurrence and Intensification of Australian East Coast Lows. J. Clim. 2019, 32, 2823–2841. [Google Scholar] [CrossRef]
- Gutiérrez-Fernández, J.; Miglietta, M.M.; González-Alemán, J.J.; Gaertner, M.A. A new refinement of Mediterranean tropical-like cyclones characteristics. Geophys. Res. Lett. 2024, 51, 106429. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Soci, C.; Hersbach, H.; Simmons, A.; Poli, P.; Bell, B.; Berrisford, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; et al. The ERA5 global reanalysis from 1940 to 2022. Q. J. R. Meteorol. Soc. 2024, 150, 4014–4048. [Google Scholar] [CrossRef]
- Cardoso, A.A.; da Rocha, R.P.; Reboita, M.S.; Crespo, N.M.; Traversi, E.d.C.C.; Vidale, P.L. Performance of the medium and high horizontal resolution models from HighResMIP-CMIP6 in simulating synoptic-scale cyclones over South America. Clim. Dyn. 2024; under review. [Google Scholar]
- Murray, R.J.; Simmonds, I. A numerical scheme for tracking cyclone centres from digital data. Aust. Met. Mag. 1991, 39, 155–166. [Google Scholar]
- Crespo, N.M.; da Rocha, R.P.; Sprenger, M.; Wernli, H. A potential vorticity perspective on cyclogenesis over centre-eastern South America. Int. J. Climatol. 2021, 41, 663–678. [Google Scholar] [CrossRef]
- Frank, W.M. The Structure and Energetics of the Tropical Cyclone I. Storm Structure. Mon. Weather Rev. 1977, 105, 1119–1135. [Google Scholar] [CrossRef]
- Evans, J.L.; Hart, R.E. Objective Indicators of the Life Cycle Evolution of Extratropical Transition for Atlantic Tropical Cyclones. Mon. Weather Rev. 2013, 131, 909–925. [Google Scholar] [CrossRef]
- Garreaud, R.; Rutllant, J.; Fuenzalida, H. Coastal Lows along the Subtropical West Coast of South America: Mean Structure and Evolution. Mon. Weather Rev. 2002, 130, 75–88. [Google Scholar] [CrossRef]
- Seluchi, M.E.; Saulo, A.C. The Northwestern Argentinean low and the Chaco low: Their characteristics, differences and similarities. Rev. Bras. Meteorol. 2012, 27, 49–60. [Google Scholar] [CrossRef]
- Mendes, D.; Souza, E.P.; Marengo, J.A.; Mendes, M.C.D. Climatology of extratropical cyclones over the South American–southern oceans sector. Theor. Appl. Climatol. 2010, 100, 239–250. [Google Scholar] [CrossRef]
- Shaevitz, D.A.; Camargo, S.J.; Sobel, A.H.; Jonas, J.A.; Kim, D.; Kumar, A.; LaRow, T.E.; Lim, Y.; Murakami, H.; Reed, K.A.; et al. Characteristics of tropical cyclones in high-resolution models in the present climate. J. Adv. Model. Earth Syst. 2014, 6, 1154–1172. [Google Scholar] [CrossRef]
- Hoskins, B.J.; Hodges, K.I. A New Perspective on Southern Hemisphere Storm Tracks. J. Clim. 2005, 18, 4108–4129. [Google Scholar] [CrossRef]
- Silva, B.A.; Reboita, M.S. Climatologia do Índice do Potencial de Gênese de Ciclones Tropicais nos Oceanos Adjacentes à América do Sul. Anu. Inst. Geocienc. 2021, 44, 39515. [Google Scholar]
- Emanuel, K.A.; Nolan, D.S. Tropical cyclone activity and the global climate system. In Proceedings of the 26th Conference on Hurricanes and Tropical Meteorology, Miami, FL, USA, 3 May 2004; American Meteorological Society: Boston, MA, USA, 2004. [Google Scholar]
Periods | SEB | URU | ARG | South Atlantic |
---|---|---|---|---|
ERA20C 1900–2010 | 0.040 (0.006) | 0.064 (0.012) | −0.177 (0.000) | −0.291 (0.000) |
ERA20C 1979–2010 | 0.096 (0.414) | −0.089 (0.820) | −0.249 (0.162) | −0.470 (0.314) |
ERA5 1979–2010 | −0.015 (1.000) | 0.103 (0.782) | 0.005 (0.871) | −0.075 (0.314) |
ERA20C (1900–2010) | ERA20C (1979–2010) | ERA5 (1979–2010) | |
---|---|---|---|
Extratropical C01, C02, C03 | 336,571 (71.4%) 32,990 (74.6%) | 91,960 (69.8%) 9084 (72.5%) | 95,042 (70.4%) 9423 (75.5%) |
Subtropical C01 | 29,712 (6.3%) 1612 (3.6%) | 9226 (7.0%) 484 (3.8%) | 8225 (6.1%) 484 (3.9%) |
Subtropical C02, C03 | 35,052 (7.4%) 1694 (3.8%) | 11,069 (8.4%) 538 (4.3%) | 10,608 (7.9%) 465 (3.8%) |
Tropical C01 | 1838 (0.4%) 96 (0.2%) | 511 (0.4%) 33 (0.3%) | 733 (0.6%) 30 (0.2%) |
Tropical C02, C03 | 6553 (1.4%) 393 (0.9%) | 1789 (1.3%) 111 (0.9%) | 2173 (1.6%) 128 (1.0%) |
Others C01 | 103,018 (21.9%) 9516 (21.5%) | 30,135 (22.8%) 2933 (23.4%) | 31,035 (22.9%) 2538 (20.4%) |
Others C02, C03 | 92,963 (19.8%) 9137 (20.7%) | 27,014 (20.5%) 2801 (22.3%) | 27,212 (20.1%) 2459 (19.7%) |
Total Events | 471,139 44,214 | 131,832 12,534 | 135,035 12,475 |
Ratio of cyclogenesis to total time steps (%) | 9.4 | 9.5 | 9.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conrado, E.T.d.C.; da Rocha, R.P.; Reboita, M.S.; Cardoso, A.A. Cyclone Classification over the South Atlantic Ocean in Centenary Reanalysis. Atmosphere 2024, 15, 1533. https://doi.org/10.3390/atmos15121533
Conrado ETdC, da Rocha RP, Reboita MS, Cardoso AA. Cyclone Classification over the South Atlantic Ocean in Centenary Reanalysis. Atmosphere. 2024; 15(12):1533. https://doi.org/10.3390/atmos15121533
Chicago/Turabian StyleConrado, Eduardo Traversi de Cai, Rosmeri Porfírio da Rocha, Michelle Simões Reboita, and Andressa Andrade Cardoso. 2024. "Cyclone Classification over the South Atlantic Ocean in Centenary Reanalysis" Atmosphere 15, no. 12: 1533. https://doi.org/10.3390/atmos15121533
APA StyleConrado, E. T. d. C., da Rocha, R. P., Reboita, M. S., & Cardoso, A. A. (2024). Cyclone Classification over the South Atlantic Ocean in Centenary Reanalysis. Atmosphere, 15(12), 1533. https://doi.org/10.3390/atmos15121533