Experimental and Computational Investigation of the Emission and Dispersion of Fine Particulate Matter (PM2.5) During Domestic Cooking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Validation Experiments: The DOMESTIC Kitchen Laboratory
2.1.1. Sensors and Instrumentation
2.1.2. Cooking Protocol
2.2. Numerical Models
2.2.1. The Code_Saturne Lagrangian Particle Tracking (LPT) Module
2.2.2. CFD Model of DOMESTIC
2.2.3. Particle Emission Modelling
3. Results and Discussion
3.1. Indoor–Outdoor PM2.5 Ratios During Experimentation
3.2. NuWave PM2.5 Data
3.3. Mode Particle Diameter and Contribution of PM1 to PM2.5 Mass Concentrations
3.4. Experimental Velocities
3.5. Experimental vs. Simulated Velocities
3.6. Experimental vs. Simulated Temperatures
3.7. PM2.5 Simulated Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Sundell, J. On the history of indoor air quality and health. Indoor Air 2004, 14, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Redlich, C.A.; Sparer, J.; Cullen, M.R. Sick-building syndrome. Lancet 1997, 349, 1013–1016. [Google Scholar] [CrossRef] [PubMed]
- Pérez Velasco, R.; Jarosińska, D. Update of the WHO global air quality guidelines: Systematic reviews—An introduction. Environ. Int. 2022, 170, 107556. [Google Scholar] [CrossRef] [PubMed]
- Public Health England. Air Quality: UK Guidelines for Volatile Organic Compounds in Indoor Spaces. 2019. Available online: https://assets.publishing.service.gov.uk/media/5d7a2912ed915d522e4164a5/VO__statement_Final_12092019_CS__1_.pdf (accessed on 15 November 2024).
- Dimitroulopoulou, S.; Dudzińska, M.R.; Gunnarsen, L.; Hägerhed, L.; Maula, H.; Singh, R.; Toyinbo, O.; Haverinen-Shaughnessy, U. Indoor air quality guidelines from across the world: An appraisal considering energy saving, health, productivity, and comfort. Environ. Int. 2023, 178, 108127. [Google Scholar] [CrossRef]
- DEFRA Air Quality Expert Group. Indoor Air Quality. 2022. Available online: https://uk-air.defra.gov.uk/assets/documents/reports/cat09/2211011000_15062022_Indoor_Air_Quality_Report_Final.pdf (accessed on 15 November 2024).
- Lewis, A.C.; Moller, S.J. How Air Pollution Is Changing. In Chief Medical Officer’s Annual Report 2022: Air Pollution; 2022; Chapter 3; pp. 44–71. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1121614/chief-medical-officers-annual-report-2022-air-pollution.pdf (accessed on 15 November 2024).
- NICE. Indoor Air Quality at Home: NICE Guideline [NG149]. 2020. Available online: https://www.nice.org.uk/guidance/ng149 (accessed on 15 November 2024).
- Bennitt, F.; Wozniak, S.; Causey, K.; Burkart, K.; Brauer, M.; Kumar, M.; Ibitoye, S.E. Estimating disease burden attributable to household air pollution: New methods within the Global Burden of Disease Study. Lancet Glob. Health 2021, 9, S18. [Google Scholar] [CrossRef]
- Patel, S.; Sankhyan, S.; Boedicker, E.K.; DeCarlo, P.F.; Farmer, D.K.; Goldstein, A.H.; Katz, E.F.; Nazaroff, W.W.; Tian, Y.; Vanhanen, J.; et al. Indoor particulate matter during HOMEChem: Concentrations, size distributions, and exposures. Envir. Sci. Tech. 2020, 54, 7107–7116. [Google Scholar] [CrossRef]
- Tsigaridis, K.; Krol, M.; Dentener, F.J.; Balkanski, Y.; Lathière, J.; Metzger, S.; Hauglustaine, D.A.; Kanakidou, M. Change in global aerosol composition since preindustrial times. Atmos. Chem. Phys. 2006, 6, 5143–5162. [Google Scholar] [CrossRef]
- Chen, J.; Hoek, G. Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis. Environ. Int. 2020, 143, 105974. [Google Scholar] [CrossRef]
- van Nunen, E.; Hoek, G.; Tsai, M.Y.; Probst-Hensch, N.; Imboden, M.; Jeong, A.; Naccarati, A.; Tarallo, S.; Raffaele, D.; Nieuwenhuijsen, M.; et al. Short-term personal and outdoor exposure to ultrafine and fine particulate air pollution in association with blood pressure and lung function in healthy adults. Environ. Res. 2021, 194, 110579. [Google Scholar] [CrossRef]
- Thangavel, P.; Park, D.; Lee, Y.C. Recent insights into particulate matter (PM2.5)-mediated toxicity in humans: An overview. Int. J. Environ. Res. Public Health 2022, 19, 7511. [Google Scholar] [CrossRef]
- Local Burden of Disease Air Pollution Collaborators. Mapping development and health effects of cooking with solid fuels in low-income and middle-income countries, 2000-18: A geospatial modelling study. Lancet Glob. Health 2022, 10, e1395–e1411. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Morawska, L.; Hitchins, J.; Gilbert, D. Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmos. Environ. 2004, 38, 3405–3415. [Google Scholar] [CrossRef]
- Brunekreef, B.; Janssen, N.; Hartog, J.; Oldenwening, M.; Meliefste, K.; Hoek, G.; Lanki, T.; Timonen, K.; Vallius, M.; Pekkanen, J.; et al. Personal, Indoor, and Outdoor Exposures to PM2.5 and its Components for Groups of Cardiovascular Patients in Amsterdam and Helsinki. Res. Rep. (Health Eff. Inst.) 2005, 127, 1–70; discussion 71. [Google Scholar]
- Department for Business, Energy & Industrial Strategy. UK Guidelines for Volatile Organic Compounds in Indoor Spaces. 2021. Available online: https://assets.publishing.service.gov.uk/media/61449c3cd3bf7f05b2ac20a4/efus-light-appliances-smart-tech.pdf (accessed on 15 November 2024).
- Leavey, A.; Patel, S.; Martinez, R.; Mitroo, D.; Fortenberry, C.; Walker, M.; Williams, B.; Biswas, P. Organic and inorganic speciation of particulate matter formed during different combustion phases in an improved cookstove. Environ. Res. 2017, 158, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Farmer, D.K.; Vance, M.E.; Abbatt, J.P.D.; Abeleira, A.; Alves, M.R.; Arata, C.; Boedicker, E.; Bourne, S.; Cardoso-Saldaña, F.; Corsi, R.; et al. Overview of HOMEChem: House Observations of Microbial and Environmental Chemistry. Environ. Sci. Process. Impacts 2019, 21, 1280–1300. [Google Scholar] [CrossRef]
- Tang, R.; Pfrang, C. Indoor particulate matter (PM) from cooking in UK students’ studio flats and associated intervention strategies: Evaluation of cooking methods, PM concentrations and personal exposures using low-cost sensors. Environ. Sci. Atmos. 2023, 3, 537–551. [Google Scholar] [CrossRef]
- Omelekhina, Y.; Eriksson, A.; Canonaco, F.; Prevot, A.S.H.; Nilsson, P.; Isaxon, C.; Pagels, J.; Wierzbicka, A. Cooking and electronic cigarettes leading to large differences between indoor and outdoor particle composition and concentration measured by aerosol mass spectrometry. Environ. Sci. Process. Impacts 2020, 22, 1382–1396. [Google Scholar] [CrossRef]
- Xiang, J.; Hao, J.; Austin, E.; Shirai, J.; Seto, E. Residential cooking-related PM2.5: Spatial-temporal variations under various intervention scenarios. Build. Environ. 2021, 201, 108002. [Google Scholar] [CrossRef]
- Whitty, C. Executive Summary. In Chief Medical Officer’s Annual Report 2022: Air Pollution; 2022; pp. i–xix. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1121614/chief-medical-officers-annual-report-2022-air-pollution.pdf (accessed on 15 November 2024).
- Anon. Air Pollution Research and Innovation. In Chief Medical Officer’s Annual Report 2022: Air Pollution; 2022; Chapter 7; pp. 305–308. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1121614/chief-medical-officers-annual-report-2022-air-pollution.pdf (accessed on 15 November 2024).
- Qingyang, L.; Joo, S.; Wood, N.; Senerat, A.; Jovan, P. Healthy home interventions: Distribution of PM2.5 emitted during cooking in residential settings. Build. Environ. 2021, 207, 108448. [Google Scholar] [CrossRef]
- Lyu, J.; Shi, Y.; Chen, C.; Zhang, X.; Chu, W.; Lian, Z. Characteristics of PM2.5 emissions from six types of commercial cooking in Chinese cities and their health effects. Environ. Pollut. 2022, 313, 120180. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, Y.; Sun, Y.; Wang, X. Experimental study of ventilation effectiveness and air velocity distribution in an aircraft cabin mockup. Build. Environ. 2008, 43, 337–343. [Google Scholar] [CrossRef]
- Khosravi, G. Prediction of Bioparticles Dispersion and Distribution in a Hospital Isolation Room. Master’s Thesis, École de Technologie Supérieure ÉTS, Montreal, QC, Canada, 2016. Available online: https://espace.etsmtl.ca/id/eprint/1631/ (accessed on 15 November 2024).
- Wang, J.X.; Cao, X.; Chen, Y.P. An air distribution optimization of hospital wards for minimizing cross-infection. J. Clean. Prod. 2020, 279, 123431. [Google Scholar] [CrossRef] [PubMed]
- Armand, P.; Tâche, J. 3D modelling and simulation of the dispersion of droplets and drops carrying the SARS-CoV-2 virus in a railway transport coach. Sci. Rep. 2022, 12, 4025. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.C.; Kong, B.; Capecelatro, J.; Desjardins, O.; Fox, R.O. Direct comparison of Eulerian–Eulerian and Eulerian–Lagrangian simulations for particle-laden vertical channel flow. AIChE J. 2020, 66, e16230. [Google Scholar] [CrossRef]
- Minier, J.P.; Peirano, E. The pdf approach to turbulent polydispersed two-phase flows. Phys. Rep. 2001, 352, 1–214. [Google Scholar] [CrossRef]
- Minier, J.P.; Chibbaro, S.; Pope, S.B. Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows. Phys. Fluids 2014, 26, 113303. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Q. Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. Atmos. Environ. 2007, 41, 5236–5248. [Google Scholar] [CrossRef]
- Tominaga, Y.; Wang, L.L.; Zhai, Z.J.; Stathopoulos, T. Accuracy of CFD simulations in urban aerodynamics and microclimate: Progress and challenges. Build. Environ. 2023, 243, 110723. [Google Scholar] [CrossRef]
- Davies, H.L.; O’Leary, C.; Dillon, T.; Shaw, D.R.; Shaw, M.; Mehra, A.; Phillips, G.; Carslaw, N. A measurement and modelling investigation of the indoor air chemistry following cooking activities. Environ. Sci. Process. Impacts 2023, 25, 1532–1548. [Google Scholar] [CrossRef]
- Zhang, Q.; Gangupomu, R.H.; Ramirez, D.; Zhu, Y. Measurement of Ultrafine Particles and Other Air Pollutants Emitted by Cooking Activities. Int. J. Environ. Res. Public Health 2010, 7, 1744–1759. [Google Scholar] [CrossRef]
- TNO. Health Effects in EU from Cooking on Gas: Phase 2 Field Study. 2023. Available online: https://publications.tno.nl/publication/34641471/zD0Xiz/TNO-2023-R11809.pdf (accessed on 15 November 2024).
- Lebel, E.D.; Finnegan, C.J.; Ouyang, Z.; Jackson, R.B. Methane and NOx Emissions from Natural Gas Stoves, Cooktops, and Ovens in Residential Homes. Environ. Sci. Technol. 2022, 56, 2529–2539. [Google Scholar] [CrossRef] [PubMed]
- Gill Instruments. WindSonic M Datasheet. 2024. Available online: https://gillinstruments.com/wp-content/uploads/2024/08/1405-0029-WindSonicM-issue-16.pdf (accessed on 15 November 2024).
- Izadyar, N.; Miller, W.; Rismanchi, B.; Garcia-Hansen, V. A numerical investigation of balcony geometry impact on single-sided natural ventilation and thermal comfort. Build. Environ. 2020, 177, 106847. [Google Scholar] [CrossRef]
- Omrani, S.; Garcia-Hansen, V.; Capra, B.R.; Drogemuller, R. Effect of natural ventilation mode on thermal comfort and ventilation performance: Full-scale measurement. Energ. Build. 2017, 156, 1–16. [Google Scholar] [CrossRef]
- QuantAQ. QuantAQ: MODULAIR-PM (Product Datasheet). 2021. Available online: https://assets.quant-aq.com/downloads/spec-sheets/modulair-pm.latest.pdf (accessed on 15 November 2024).
- AQMD. South Coast Air Quality Management District: QuantAQ MODULAIR-PM Sensor Detail and Field Evaluation. 2021. Available online: http://www.aqmd.gov/aq-spec/sensordetail/quantaq---modulair-pm (accessed on 15 November 2024).
- AirSentric. AirSentric WB55 AR10-B-118-A Technical Specification. 2022. Available online: https://airsentric.com/wb55-118-specifications/ (accessed on 15 November 2024).
- Zheng, H.; Krishnan, V.; Walker, S.; Loomans, M.; Zeiler, W. Laboratory evaluation of low-cost air quality monitors and single sensors for monitoring typical indoor emission events in Dutch daycare centers. Environ. Int. 2022, 166, 107372. [Google Scholar] [CrossRef]
- O’Leary, C.; de Kluizenaar, Y.; Jacobs, P.; Borsboom, W.; Hall, I.; Jones, B. Investigating measurements of fine particle (PM2.5) emissions from the cooking of meals and mitigating exposure using a cooker hood. Indoor Air 2019, 29, 423–438. [Google Scholar] [CrossRef]
- Harding-Smith, E.; Davies, H.L.; O’Leary, C.; Winkless, R.; Shaw, M.; Dillon, T.; Jones, B.; Carslaw, N. The impact of surfaces on indoor air chemistry following cooking and cleaning. Environ. Sci. Process. Impacts 2024. [Google Scholar] [CrossRef]
- Jones, H.; Kumar, A.; O’Leary, C.; Dillon, T.; Rolfo, S. Experimental and Computational Investigation of the Emission and Dispersion of Fine Particulate Matter (PM2.5) During Domestic Cooking—Dataset. eData 2024. [Google Scholar] [CrossRef]
- Chibbaro, S.; Minier, J.P. Langevin PDF simulation of particle deposition in a turbulent pipe flow. J. Aerosol Sci. 2008, 39, 555–571. [Google Scholar] [CrossRef]
- Balvet, G.; Minier, J.P.; Henry, C.; Roustan, Y.; Ferrand, M. A time-step-robust algorithm to compute particle trajectories in 3D unstructured meshes for Lagrangian stochastic methods. Monte Carlo Methods Appl. 2023, 29, 95–126. [Google Scholar] [CrossRef]
- Minier, J.P.; Peirano, E.; Chibbaro, S. PDF model based on Langevin equation for polydispersed two-phase flows applied to a bluff-body gas-solid flow. Phys. Fluids 2004, 16, 2419–2431. [Google Scholar] [CrossRef]
- CEA; EDF; OPEN CASCADE. SALOME Platform Documentation. 2023. Available online: https://docs.salome-platform.org/latest/main/index.html (accessed on 15 November 2024).
- Archambeau, F.; Méchitoua, N.; Sakiz, M. Code Saturne: A Finite Volume Code for the computation of turbulent incompressible flows—Industrial Applications. Int. J. Finite Vol. 2004, 1. hal-01115371. [Google Scholar]
- Fournier, Y.; Bonelle, J.; Moulinec, C.; Shang, Z.; Sunderland, A.; Uribe, J. Optimizing Code_Saturne computations on Petascale systems. Comput. Fluids 2011, 45, 103–108. [Google Scholar] [CrossRef]
- EDF R&D. Code_Saturne 8.0 Theory Guide. 2022. Available online: https://www.code-saturne.org/documentation/8.0/theory.pdf (accessed on 15 November 2024).
- Gray, D.D.; Giorgini, A. The validity of the boussinesq approximation for liquids and gases. Int. J. Heat Mass Tran. 1976, 19, 545–551. [Google Scholar] [CrossRef]
- Manceau, R.; Hanjalić, K. Elliptic blending model: A new near-wall Reynolds-stress turbulence closure. Phys. Fluids 2002, 14, 744–754. [Google Scholar] [CrossRef]
- Germano, M.; Piomelli, U.; Moin, P.; Cabot, W.H. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A Fluid Dyn. 1991, 3, 1760–1765. [Google Scholar] [CrossRef]
- Ducros, F.; Franck, N.; Poinsot, T. Wall-Adapting Local Eddy-Viscosity Models for Simulations in Complex Geometries. In the Conference Proceedings Numerical Methods for Fluid Dynamics VI. 1998. Available online: https://www.researchgate.net/publication/248366844_Wall-Adapting_Local_Eddy-Viscosity_Models_for_Simulations_in_Complex_Geometries (accessed on 15 November 2024).
- Ayachit, U. The ParaView Guide: A Parallel Visualization Application; Kitware: New York, NY, USA, 2015; ISBN 9781930934306. [Google Scholar]
- Pikmann, J.; Drewnick, F.; Fachinger, F.; Borrmann, S. Particulate emissions from cooking activities: Emission factors, emission dynamics, and mass spectrometric analysis for different preparation methods. EGUsphere 2023, 2023, 1–36. [Google Scholar] [CrossRef]
- Wang, P.; Xu, F.; Gui, H.; Wang, H.; Chen, D.R. Effect of Relative Humidity on the Performance of Five Cost-effective PM Sensors. Aerosol Sci. Tech. 2021, 55, 957–974. [Google Scholar] [CrossRef]
- Willeke, K.; Whitby, K.T. Atmospheric Aerosols: Size Distribution Interpretation. J. Air Pollut. Control Assoc. 1975, 25, 529–534. [Google Scholar] [CrossRef]
- Farghadan, A.; Poorbahrami, K.; Jalal, S.; Oakes, J.M.; Coletti, F.; Arzani, A. Particle transport and deposition correlation with near-wall flow characteristic under inspiratory airflow in lung airways. Comp. Biol. Med. 2020, 120, 103703. [Google Scholar] [CrossRef]
- Li, C.; Crua, C.; Vogiatzaki, K. Effect of the scale resolution on the two phase coupling characteristics of high speed evaporating sprays using LES/Eulerian-Lagrangian methodologies. Int. J. Multiphas. Flow 2019, 120, 103060. [Google Scholar] [CrossRef]
- Courant, R.; Friedrichs, K.; Lewy, H. On the Partial Difference Equations of Mathematical Physics. IBM J. Res. Dev. 1967, 11, 215–234. [Google Scholar] [CrossRef]
Sensor Abbreviation/Full Title | x Centrepoint (m) | y Centrepoint (m) | z Centrepoint (m) |
---|---|---|---|
A1/WindSonic M Anemometer_1 | 3.55 | 0.16 | 1.1 |
A2/WindSonic M Anemometer_2 | 3.55 | 0.16 | 1.4 |
D1/NuWave AirSentric WB55 AR10-B-118-A_D1 | 1.55 | 1.55 | 1.92 |
D2/NuWave AirSentric WB55 AR10-B-118-A_D2 | 4.28 | 0.65 | 1.27 |
D3/NuWave AirSentric WB55 AR10-B-118-A_D3 | 0.76 | 0.81 | 2.25 |
D4/NuWave AirSentric WB55 AR10-B-118-A_D4 | 2.8 | 1.55 | 1.92 |
D5/NuWave AirSentric WB55 AR10-B-118-A_D5 | 4.08 | 2 | 0.74 |
D6/NuWave AirSentric WB55 AR10-B-118-A_D6 | 2.34 | 0.35 | 1.92 |
QAQ/QuantAQ MODULAIR-PM | 2.5 | 1.55 | 1.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, H.; Kumar, A.; O’Leary, C.; Dillon, T.; Rolfo, S. Experimental and Computational Investigation of the Emission and Dispersion of Fine Particulate Matter (PM2.5) During Domestic Cooking. Atmosphere 2024, 15, 1517. https://doi.org/10.3390/atmos15121517
Jones H, Kumar A, O’Leary C, Dillon T, Rolfo S. Experimental and Computational Investigation of the Emission and Dispersion of Fine Particulate Matter (PM2.5) During Domestic Cooking. Atmosphere. 2024; 15(12):1517. https://doi.org/10.3390/atmos15121517
Chicago/Turabian StyleJones, Harriet, Ashish Kumar, Catherine O’Leary, Terry Dillon, and Stefano Rolfo. 2024. "Experimental and Computational Investigation of the Emission and Dispersion of Fine Particulate Matter (PM2.5) During Domestic Cooking" Atmosphere 15, no. 12: 1517. https://doi.org/10.3390/atmos15121517
APA StyleJones, H., Kumar, A., O’Leary, C., Dillon, T., & Rolfo, S. (2024). Experimental and Computational Investigation of the Emission and Dispersion of Fine Particulate Matter (PM2.5) During Domestic Cooking. Atmosphere, 15(12), 1517. https://doi.org/10.3390/atmos15121517