Statistical Characterization of the Magnetic Field in Space during Magnetic Storms
Abstract
:1. Magnetic Storms
2. Probability Density Estimates of the Magnitudes of the Components of the Magnetic Field during a Magnetic Storm
3. Autocorrelation Function for Each Component of the Magnetic Field during a Magnetic Storm
4. Power Spectrum of Each Component of the Magnetic Field during a Magnetic Storm
5. Results and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dungey, J.W. Interplanetary Magnetic Field and the Auroral Zones. Phys. Rev. Lett. 1961, 6, 47–48. [Google Scholar] [CrossRef]
- Gonzalez, W.D.; Ioselyn, J.A.; Kamide, Y.; Kroehl, H.W.; Rostoker, G.; Tsurutani, B.T.; Vasyliunas, V.M. What is a geomagnetic storm? J. Geophys. Res. Space Phys. 1994, 99, 5771–5792. [Google Scholar] [CrossRef]
- Poros, D.J.; Sugiura, M. Hourly Values of Equatorial Dst, 1957–1970. 1971. Available online: https://ntrs.nasa.gov/api/citations/19710022962/downloads/19710022962.pdf (accessed on 20 July 2022).
- Bingxian, L.; Ronglan, W.; Wei, L.; Ruidong, Y.; Tingling, R.; Shuyi, R.; Siqing, L.; Jihou, L. Analysis of the space environment for the destruction of the Starlink satellite by geomagnetic storms. Int. Space 2022, 2022, 35–39. [Google Scholar]
- Akasofu, S.I. Physics of Magnetospheric Substorms; Reidel Publishing Company: Gothenburg, Sweden, 1977. [Google Scholar]
- Xu, W.Y.; Guo, L.J. Space electromagnetic environment research for military applications. Adv. Geophys. 2007, 2007, 335–344. [Google Scholar]
- Rikitake, T. Electromagnetism and Earth s Interior; Elsevier Publishing Company: Amsterdam, The Netherlands, 1966. [Google Scholar]
- Gonzalez, W.D.; Mozer, F.S. Quantitative model for potential resulting from reconnection with an arbitrary interplanetary magnetic-field. J. Geophys. Res. 1974, 79, 4186–4194. [Google Scholar] [CrossRef]
- Vasyliunas Vytenis, M. Theoretical models of magnetic field line merging. Rev. Geophys. 1975, 13, 303. [Google Scholar] [CrossRef]
- Cowley, S.W.H. Solar wind control of magnetospheric convection. In Achievements of the International Magnetospheric Study, Proceedings of the International Symposium, Graz, Austria, 26–28 June 1984; European Space Agency: Paris, France, 1984; Volume 217, p. 483. [Google Scholar]
- Gonzalez, W.D.; Tsurutani, B.T.; Gonzalez, A.L.; Smith, E.J.; Tang, F.; Akasofu, S.I. Solar wind-magnetosphere coupling during intense magnetic storms (1978–1979). J. Geophys. Res. Space Phys. 1989, 94, 8835–8851. [Google Scholar] [CrossRef]
- Gonzalez, W.D.; Clúa de Gonzalez, A.L.; Mendes Jr, O.; Tsurutani, B.T. Difficulties defining storm sudden commencements. Eos Trans. Am. Geophys. Union 2013, 73, 180–181. [Google Scholar] [CrossRef]
- Sugiura, M. Equatorial current sheet in the magnetosphere. J. Geophys. Res. 1972, 77, 6093–6103. [Google Scholar] [CrossRef]
- Davis, T.N.; Parthasarathy, R. The relationship between polar magnetic activity DP and growth of the geomagnetic ring current. J. Geophys. Res. 1967, 72, 5825–5836. [Google Scholar] [CrossRef]
- Rostoker, G.; Fälthammar, C.-G. Relationship between changes in the interplanetary magnetic field and variations in the magnetic field at the Earth’s surface. J. Geophys. Res. 1967, 72, 5853–5863. [Google Scholar] [CrossRef]
- Richards, M.A. Fundamentals of Radar Signal Processing, 2nd ed.; McGraw-Hill and Publishing House of Electronics Industry: New York, NY, USA, 2005. [Google Scholar]
- Haykin, S. Adaptive Filter Theory, 5th ed.; Publishing House of Electronics Industry, Pearson: New York, NY, USA, 2002. [Google Scholar]
- Haykin, S. Neural Networks and Learning Machines, 3rd ed.; Publishing House of Electronics Industry, Pearson: New York, NY, USA, 2009. [Google Scholar]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification, 2nd ed.; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Fukunaga, K. Introduction to Statistical Pattern Recognition, 2nd ed.; Academic Press: Orlando, FL, USA, 1990. [Google Scholar]
- Trees, V. Detection, Estimation, and Modulation Theory; Wiley: New York, NY, USA, 1971. [Google Scholar]
- Haykin, S. Communication Systems, 4th ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Luo, L.; Zhang, Y.; Fang, T.; Ning, L. A New Robust Kalman Filter for SINS/DVL Integrated Navigation System. IEEE Access 2019, 7, 51386–51395. [Google Scholar] [CrossRef]
- Schwarzbach, P.; Michler, O. GNSS Probabilistic single differencing for non-parametric state estimation based on spatial map data. In Proceedings of the 2020 European Navigation Conference (ENC), Dresden, Germany, 23–24 November 2020. [Google Scholar]
- Rosenblatt, M. A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 1956, 42, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Parzen, E. On the estimation of a probability density and the mode. Ann. Math. Stat. 1962, 33, 1065–1076. [Google Scholar] [CrossRef]
- Machkouri, M.E. Asymptotic normality of the Parzen-Rosenblatt density estimator for strongly mixing random fields. Stat. Inference Stoch. Process. 2018, 14, 73–84. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, B.; Peng, L. Ambiguity function analysis for OFDM radar signals. In Proceedings of the 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 10–13 October 2016. [Google Scholar]
- Wu, Y.; Liao, G. Adaptive beamforming in spatially non-stationaey noise environment. Syst. Eng. Electron. Technol. 2003, 25, 3. [Google Scholar]
- Zhang, L.-J.; Liao, G. Adaptive beamforming in color-noise environment. J. Electron. 1998, 26, 4. [Google Scholar]
- Wu, Y.; Tam, K. On determination of the number of signals in spatially correlated noise. IEEE Trans. Signal Process. 1998, 46, 3023–3029. [Google Scholar] [CrossRef]
- Goransson, B.; Ottersten, B. Direction estimation in partially unknown noise fields. IEEE Trans. Signal Process. 1999, 47, 2375–2385. [Google Scholar] [CrossRef]
- Pratibha, K.; Chandrashekar, H.M. Estimation and tracking of pitch for noisy speech signals using EMD based autocorrelation function algorithm. In Proceedings of the IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, Bengaluru, India, 19–20 May 2017. [Google Scholar]
- Luo, H.; Liu, R.; Lin, X. The autocorrelation matching method for distributed MIMO communications over unknown FIR channels. In Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, USA, 7–11 May 2001. [Google Scholar]
- Zhang, L.; Zhao, G.; Zhou, W.; Li, L.; Wu, G.; Liang, Y.; Li, S. Primary Channel Gain Estimation for Spectrum Sharing in Cognitive Radio Networks. IEEE Trans. Commun. 2016, 65, 4152–4162. [Google Scholar]
- Rahmanil, M. Frequency hopping in cognitive radio networks: A survey. In Proceedings of the IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), Orlando, FL, USA, 14–16 December 2015; IEEE: New York, NY, USA, 2016. [Google Scholar]
- Qi, P.; Du, Y.; Wang, D.; Li, Z. Wideband Spectrum Sensing Based on Bidirectional Decision of Normalized Spectrum for Cognitive Radio Networks. IEEE Access 2019, 7, 140833–140845. [Google Scholar] [CrossRef]
- Knapp, C.; Carter, G. The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech Signal Process. 1976, ASSP-24, 320–327. [Google Scholar] [CrossRef]
- Pozidis, H.; Petropulu, A.P. Cross-Spectrum Based Blind Channel Identification. IEEE Trans. Signal Process. 1970, 45, 2977–2992. [Google Scholar] [CrossRef]
- Akaike, H. Some problems in the application of the cross spectral methods. In Spectral Analysis of Time; John Wiley & Sons: Hoboken, NJ, USA, 1967. [Google Scholar]
- Haykin, S. Cognitive Dynamic Systems: Perception-Action Cycle, Radar and Radio; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Hu, Y. Study on the Characteristics of Ionospheric Electromagnetic Wave Motion Caused by Earthquakes and Magnetic Storms. Master’s Dissertation, China Earthquake Administration, Shenzhen, China, 2020. Available online: https://mall.cnki.net/magazine/article/CDMD/1020147341.htm (accessed on 10 July 2022).
- Yi, T.C.; Gang, Z.Q.; Sen, H.J.; Hua, W.L. Solar-Terrestrial Space Physics; Science Press: Beijing, China, 1988. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.-H.; Li, L.; Chen, T.; Ti, S.; Cai, C.-L.; Li, W.; Luo, J. Statistical Characterization of the Magnetic Field in Space during Magnetic Storms. Atmosphere 2022, 13, 1578. https://doi.org/10.3390/atmos13101578
Wang S-H, Li L, Chen T, Ti S, Cai C-L, Li W, Luo J. Statistical Characterization of the Magnetic Field in Space during Magnetic Storms. Atmosphere. 2022; 13(10):1578. https://doi.org/10.3390/atmos13101578
Chicago/Turabian StyleWang, Shi-Han, Lei Li, Tao Chen, Shuo Ti, Chun-Lin Cai, Wen Li, and Jing Luo. 2022. "Statistical Characterization of the Magnetic Field in Space during Magnetic Storms" Atmosphere 13, no. 10: 1578. https://doi.org/10.3390/atmos13101578
APA StyleWang, S. -H., Li, L., Chen, T., Ti, S., Cai, C. -L., Li, W., & Luo, J. (2022). Statistical Characterization of the Magnetic Field in Space during Magnetic Storms. Atmosphere, 13(10), 1578. https://doi.org/10.3390/atmos13101578