Fault Diagnosis of Rolling Bearing Based on Multiscale Intrinsic Mode Function Permutation Entropy and a Stacked Sparse Denoising Autoencoder
Abstract
:1. Introduction
2. Proposed Fault Diagnosis Method
2.1. Overview of the Proposed Method
2.2. Signal Preprocessing Based on EEMD
- (1)
- Let the raw signal be , and let be the number of aggregates. Let .
- (2)
- Add Gaussian white noise with amplitude coefficient to . Generate a new signal :
- (3)
- Decompose into a series of IMFs using the EMD method.
- (4)
- When , repeat steps (2) and (3), but the newly added Gaussian white noise needs to be different from the previous noise. Let .
- (5)
- After the above decompositions, generate several groups of IMFs. Their mean values are:
2.3. Feature Extraction Based on MPE
2.4. Health Condition Classification Based on the SSDAE
2.4.1. Autoencoder and its Variant Algorithms
2.4.2. Stacked Sparse Denoising Autoencoder
3. Experiments and Analysis
3.1. Experiment 1: Case Western Reserve University (CWRU) Bearing Dataset
3.1.1. Dataset Introduction and Experiment Description
3.1.2. Spectral Characteristic Analysis and IMFs Screening
3.1.3. Scale Factor Selection and Feature Extraction Analysis
3.1.4. Validation Results
3.2. Experiment 2: The Laboratory Measurement Bearing Dataset
3.2.1. Experimental Data
3.2.2. Spectral Characteristic Analysis and IMFs Screening
3.2.3. Influence of Scale Factor Variation on MPE
3.2.4. Validation Results
4. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Cui, L.; Wu, N.; Ma, C. Quantitative fault analysis of roller bearings based on a novel matching pursuit method with a new step-impulse dictionary. Mech. Syst. Signal Process. 2016, 68, 1. [Google Scholar] [CrossRef]
- Liao, M.F.; Ma, Z.G.; Liu, Y.Q. Fault characteristics and diagnosis method of inter shaft bearing in aero-engine. J. Aerosp. Power 2013, 28, 2752–2758. [Google Scholar]
- Liu, Y.; Zhang, J.; Ma, L. A fault diagnosis approach for diesel engines based on self-adaptive WVD, improved FCBF and PECOC-RVM. Neurocomputing 2016, 177, 600–611. [Google Scholar] [CrossRef]
- Zarei, J.; Poshtan, J. Bearing fault detection using wavelet packet transform of induction motor stator current. Tribol. Int. 2007, 40, 763–769. [Google Scholar] [CrossRef]
- Prabhakar, S.; Mohanty, A.R.; Sekhar, A.S. Application of discrete wavelet transform for detection of ball bearing race faults. Tribol. Int. 2002, 35, 793–800. [Google Scholar] [CrossRef]
- Kankar, P.K.; Sharma, S.C.; Harsha, S.P. Rolling element bearing fault diagnosis using wavelet transform. Neurocomputing 2011, 74, 1638–1645. [Google Scholar] [CrossRef]
- Huang, N.E.; Zheng, S.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Chi, C.T.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Chen, X.H.; Cheng, G.; Shan, X.L.; Hu, X.; Guo, Q.; Liu, H.G. Research of weak fault feature information extraction of planetary gear based on ensemble empirical mode decomposition and adaptive stochastic resonance. Measurement 2015, 73, 55–67. [Google Scholar] [CrossRef]
- Wu, Z.H.; Huang, N.E. Ensemble empirical mode decomposition: A noise assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Lei, Y.; Li, N.; Lin, J.; Wang, S. Fault Diagnosis of Rotating Machinery Based on an Adaptive Ensemble Empirical Mode Decomposition. Sensors 2013, 13, 16950–16964. [Google Scholar] [CrossRef] [Green Version]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef] [PubMed]
- Olofsen, E.; Sleigh, J.W.; Dahan, A. Permutation entropy of the electroencephalogram: A measure of anaesthetic drug effect. Br. J. Anaesth. 2008, 101, 810–821. [Google Scholar] [CrossRef]
- Wu, S.D.; Wu, P.H.; Wu, C.W.; Ding, J.J.; Wang, C.C. Bearing Fault Diagnosis Based on Multiscale Permutation Entropy and Support Vector Machine. Mol. Divers. Preserv. Int. 2012, 14, 1343–1356. [Google Scholar] [CrossRef] [Green Version]
- Arenas, A.; Aziz, B.; Bicarregui, J. An Event-B approach to data sharing agreements. In Integrated Formal Methods-IFM; Furia, C.A., Winter, K., Eds.; Springer: Berlin, Germany, 2010. [Google Scholar]
- D’addona, D.M.; Ullah, A.M.M.S.; Matarazzo, D. Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing. J. Intell. Manuf. 2017, 28, 1–17. [Google Scholar] [CrossRef]
- Yu, H.; Khan, F.; Garaniya, V.; Ahmad, A. Self-Organizing Map Based Fault Diagnosis Technique for Non-Gaussian Processes. Ind. Eng. Chem. Res. 2014, 53, 8831–8843. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, N.; Li, J.; Wang, G. Application of wavelet packet in motor fault diagnosis. J. Changchun Univ. Technol. 2013, 34, 387–391. [Google Scholar]
- Liu, Z.; Chen, X.; He, Z.; Shen, Z. LMD Method and Multi-Class RWSVM of Fault Diagnosis for Rotating Machinery Using Condition Monitoring Information. Sensors 2013, 13, 8679–8694. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Li, Z.; Wang, B.; Zhao, Z.; Li, F. Nonlinear feature selection using Gaussian kernel SVM-RFE for fault diagnosis. Appl. Intell. 2018, 1, 1–26. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q.; Qin, X.; Sun, Y. Rolling bearing fault diagnosis based on ITD Lempel-Ziv complexity and PSO-SVM. J. Vib. Shock 2016, 35, 102–107. [Google Scholar]
- Liang, S.; Chen, Y.; Liang, H.; Li, X. Sparse Representation and SVM Diagnosis Method for Inter-Turn Short-Circuit Fault in PMSM. Appl. Sci. 2019, 9, 224. [Google Scholar] [CrossRef]
- Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with denoising autoencoders. In Proceedings of the International Conference on Machine Learning, Vancouver, BC, Canada, 20–24 June 2008. [Google Scholar]
- Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408. [Google Scholar]
- Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Chen, Z.Q.; Li, C.; Sanchez, R.V. Gearbox fault identification and classification with convolutional neural networks. Shock Vib. 2015, 18, 1155–1164. [Google Scholar] [CrossRef]
- Gan, M.; Wang, C.; Zhu, C.A. Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mech. Syst. Signal Process. 2016, 72–73, 92–104. [Google Scholar] [CrossRef]
- Baraldi, P.; Di Maio, F.; Genini, D.; Zio, E. Comparison of Data-Driven Reconstruction Methods For Fault Detection. IEEE Trans. Reliab. 2015, 64, 852–860. [Google Scholar] [CrossRef] [Green Version]
- Bengio, Y. Learning Deep Architectures for AI. Found. Trends Mach. Learn. 2009, 2, 1–127. [Google Scholar] [CrossRef]
- Jia, F.; Lei, Y.; Lin, J.; Zhou, X. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 2016, 72, 303–315. [Google Scholar] [CrossRef]
- Xia, M.; Li, T.; Liu, L.; Xu, L.; Silva, C.W.D. An Intelligent Fault Diagnosis Approach with Unsupervised Feature Learning by Stacked Denoising Autoencoder. IET Sci. Meas. Technol. 2017, 11, 687–695. [Google Scholar] [CrossRef]
- Tan, J.; Lu, W.; An, J. Fault diagnosis method study in roller bearing based on wavelet transform and stacked auto-encoder. In Proceedings of the IEEE Control & Decision Conference, Osaka, Japan, 15–18 December 2015. [Google Scholar]
- Sohaib, M.; Kim, C.H.; Kim, J.M. A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis. Sensors 2017, 17, 2876. [Google Scholar] [CrossRef]
- Meng, L.; Ding, S.; Zhang, N. Research of stacked denoising sparse autoencoder. Neural Comput. Appl. 2016, 30, 2083–2100. [Google Scholar] [CrossRef]
- Huang, N.E.; Wu, M.L.C.; Long, S.R. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2003, 459, 2317–2345. [Google Scholar] [CrossRef]
- Rilling, G.; Flandrin, P. One or two frequencies? The empirical mode decomposition answers. IEEE Trans. Signal Process. 2007, 56, 85–95. [Google Scholar] [CrossRef]
- Zheng, J.D.; Cheng, J.S.; Yang, Y. Multi-scale permutation entropy and its applications to rolling bearing fault diagnosis. China Mech. Eng. 2013, 24, 2641–2646. [Google Scholar]
- Bengio, S.; Pereira, F.; Singer, Y.; Strelow, D. Group sparse coding. In Proceedings of the International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 7–10 December 2009. [Google Scholar]
- Smith, W.A.; Randall, R.B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study. Mech. Syst. Signal Process. 2015, 64–65, 100–131. [Google Scholar] [CrossRef]
- Wardle, F.P. Vibration forces produced by waviness of the rolling surfaces of thrust loaded ball bearings. Part2, Experimental validation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 1988, 202, 313–319. [Google Scholar] [CrossRef]
- Maaten, L.V.D.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Hong, S.; Zhou, Z.; Zio, E.; Hong, K. Condition assessment for the performance degradation of bearing based on a combinatorial feature extraction method. Dig. Signal Process. 2014, 27, 159–166. [Google Scholar] [CrossRef]
- Tang, G.; Wang, X.; He, Y.; Liu, S. Rolling bearing fault diagnosis based on variational mode decomposition and permutation entropy. In Proceedings of the 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Xi’an, China, 19–22 August 2016. [Google Scholar]
- Huang, J.; Hu, X.; Xin, G. An intelligent fault diagnosis method of high voltage circuit breaker based on improved EMD energy entropy and multi-class support vector machine. Electr. Power Syst. Res. 2011, 81, 400–407. [Google Scholar] [CrossRef]
Type | Outside Diameter | Inside Diameter | Thickness | Ball Diameter | Pitch Diameter | Number of Balls |
---|---|---|---|---|---|---|
6205-2RS JEM SKF | 52 | 25 | 15 | 7.94 | 39 | 9 |
Fault Type | Fault Diameter (mm) | Training Samples | Testing Samples | Sample Length | Sample Label |
---|---|---|---|---|---|
N | 0 | 100 | 50 | 2048 | 1 |
ORF | 0.18/0.36/0.54 | 100/100/100 | 50/50/50 | 2 | |
BF | 0.18/0.36/0.54 | 100/100/100 | 50/50/50 | 3 | |
IRF | 0.18/0.36/0.54 | 100/100/100 | 50/50/50 | 4 |
No. of Hidden Layers | No. of Input Layer Neurons | No. of Hidden Layer Neurons | No. of Output Layer Neurons | Activation Function |
---|---|---|---|---|
2 | 60 | 100,60 | 4 | sigmoid |
Epoch Number | Corruption Level | Learning Rate | Sparsity Parameter | Sparsity Penalty Term |
100 | 0.3 | 0.1,0.1,0.2 | 0.15 | 3 |
Methods | N | ORF | BF | IRF | Total |
---|---|---|---|---|---|
EEMD + MPE + SSDAE (proposed) | 100 | 99.33 | 99.33 | 100 | 99.60 |
EEMD + MPE + Stacked AE | 98.00 | 98.67 | 98.00 | 96.67 | 97.80 |
EEMD + MPE + SVM | 100 | 95.33 | 92.67 | 90.00 | 93.40 |
EEMD + MPE + BPNN | 90.00 | 92.67 | 90.67 | 87.33 | 90.20 |
Methods | N | ORF | BF | IRF | Total |
---|---|---|---|---|---|
EEMD-MPE (proposed) | 100 | 99.33 | 99.33 | 100 | 99.60 |
VMD-PE | 100 | 100 | 99.33 | 98.67 | 99.20 |
WP-EMD | 98.00 | 98.00 | 98.67 | 99.33 | 98.60 |
EMDEE | 94.00 | 98.67 | 98.00 | 97.33 | 97.60 |
Parameter | Inner Ring Diameter | Outer Ring Diameter | Pitch Diameter | Ball Diameter | Number of Balls |
---|---|---|---|---|---|
Value | 20 | 52 | 36 | 9.6 | 7 |
Fault Type | Training Samples | Test Samples | Sample Length | Sample Label |
---|---|---|---|---|
N | 300 | 150 | 2048 | 1 |
ORF | 300 | 150 | 2 | |
BF | 300 | 150 | 3 | |
IRF | 300 | 150 | 4 | |
IRF+ORF | 300 | 150 | 5 | |
IRF+BF | 300 | 150 | 6 | |
ORF+BF | 300 | 150 | 7 |
Methods | Classification Accuracy (%) | ||||
---|---|---|---|---|---|
Test 1 | Test 2 | Test 3 | Test 4 | Average Accuracy | |
EEMD + MPE + SSDAE | 97.9 | 98.19 | 98.38 | 97.43 | 97.98 |
EEMD + MPE + Stacked AE | 96.86 | 95.9 | 96.19 | 94.48 | 95.86 |
EEMD + MPE + SVM | 92.47 | 93.33 | 88.48 | 91.43 | 91.43 |
Stacked AE | 90.09 | 89.62 | 89.24 | 90.47 | 88.07 |
AE | 82.95 | 86.76 | 84.95 | 83.9 | 86.43 |
SVM | 66.67 | 63.8 | 62.95 | 63.24 | 64.17 |
BPNN | 37.24 | 33.71 | 38.57 | 35.33 | 36.21 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, J.; Tang, J.; Shao, F.; Huang, S.; Wang, Y. Fault Diagnosis of Rolling Bearing Based on Multiscale Intrinsic Mode Function Permutation Entropy and a Stacked Sparse Denoising Autoencoder. Appl. Sci. 2019, 9, 2743. https://doi.org/10.3390/app9132743
Dai J, Tang J, Shao F, Huang S, Wang Y. Fault Diagnosis of Rolling Bearing Based on Multiscale Intrinsic Mode Function Permutation Entropy and a Stacked Sparse Denoising Autoencoder. Applied Sciences. 2019; 9(13):2743. https://doi.org/10.3390/app9132743
Chicago/Turabian StyleDai, Juying, Jian Tang, Faming Shao, Shuzhan Huang, and Yangyang Wang. 2019. "Fault Diagnosis of Rolling Bearing Based on Multiscale Intrinsic Mode Function Permutation Entropy and a Stacked Sparse Denoising Autoencoder" Applied Sciences 9, no. 13: 2743. https://doi.org/10.3390/app9132743
APA StyleDai, J., Tang, J., Shao, F., Huang, S., & Wang, Y. (2019). Fault Diagnosis of Rolling Bearing Based on Multiscale Intrinsic Mode Function Permutation Entropy and a Stacked Sparse Denoising Autoencoder. Applied Sciences, 9(13), 2743. https://doi.org/10.3390/app9132743