Does Higher Maturation Make Age-Grouped Swimmers Faster? A Study on Pubertal Female Swimmers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometrics, Body Composition, and Biological Age
2.3. The 100 m Front Crawl
2.4. The 1 min Tethered Swimming Test
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morais, J.E.; Jesus, S.; Lopes, V.; Garrido, N.; Silva, A.; Marinho, D.; Barbosa, T.M. Linking selected kinematic, anthropometric and hydrodynamic variables to young swimmer performance. Pediatr. Exerc. Sci. 2012, 24, 649–664. [Google Scholar] [CrossRef]
- Jürimäe, J.; Haljaste, K.; Cicchella, A.; Lätt, E.; Purge, P.; Leppik, A.; Jürimäe, T. Analysis of swimming performance from physical, physiological, and biomechanical parameters in young swimmers. Pediatr. Exerc. Sci. 2007, 19, 70–81. [Google Scholar] [CrossRef]
- Nasirzade, A.; Sadeghi, H.; Sobhkhiz, A.; Mohammadian, K.; Nikouei, A.; Baghaiyan, M.; Fattahi, A. Multivariate analysis of 200-m front crawl swimming performance in young male swimmers. Acta Bioeng. Biomech. Orig. Pap. 2015, 17, 137–143. [Google Scholar] [CrossRef]
- Lätt, E.; Jürimäe, J.; Haljaste, K.; Cicchella, A.; Purge, P.; Jürimäe, T. Physical Development and Swimming Performance During Biological Maturation in Young Female Swimmers. Coll. Antropol. 2009, 33, 117–122. [Google Scholar] [PubMed]
- Barbosa, T.M.; Bartolomeu, R.; Morais, J.E.; Costa, M.J. Skillful swimming in age-groups is determined by anthropometrics, biomechanics and energetics. Front. Physiol. 2019, 10, 73. [Google Scholar] [CrossRef]
- Dormehl, S.; Osborough, C. Effect of age, sex, and race distance on front crawl stroke parameters in subelite adolescent swimmers during competition. Pediatr. Exerc. Sci. 2015, 27, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Bond, D.; Goodson, L.; Oxford, S.W.; Nevill, A.M.; Duncan, M.J. The Association between Anthropometric Variables, Functional Movement Screen Scores and 100 m Freestyle Swimming Performance in Youth Swimmers. Sports 2015, 3, 1–11. [Google Scholar] [CrossRef]
- Geladas, N.D.; Nassis, G.P.; Pavlicevic, S. Somatic and physical traits affecting sprint swimming performance in young swimmers. Int. J. Sports Med. 2005, 26, 139–144. [Google Scholar] [CrossRef]
- Baxter-Jones, A.D.G.; Helms, P.; Maffulli, N.; Baines-Preece, J.C.; Preece, M. Growth and development of Male gymnasts, swimmers, soccer and tennis players: A longitudinal study. Ann. Hum. Biol. 1995, 22, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Unnithan, V.; Holohan, J.; Fernhall, B.; Wylegala, J.; Rowland, T.; Pendergast, D.R. Aerobic cost in elite female adolescent swimmers. Int. J. Sports Med. 2009, 30, 194–199. [Google Scholar] [CrossRef]
- Sokołowski, K.; Strzała, M.; Stanula, A.; Kryst, Ł.; Radecki-Pawlik, A.; Krężałek, P.; Rosemann, T.; Knechtle, B. Biological Age in Relation to Somatic, Physiological, and Swimming Kinematic Indices as Predictors of 100 m Front Crawl Performance in Young Female Swimmers. Int. J. Environ. Res. Public Health 2021, 18, 6062. [Google Scholar] [CrossRef]
- Lätt, E.; Jürimäe, J.; Mäestu, J.; Purge, P.; Rämson, R.; Haljaste, K.; Keskinen, K.L.; Rodriguez, F.A.; Jürimäe, T. Physiological, biomechanical and anthropometrical predictors of sprint swimming performance in adolescent swimmers. J. Sport. Sci. Med. 2010, 9, 398–404. [Google Scholar]
- Eriksson, B.O.; Gollnick, P.D.; Saltin, B. Muscle Metabolism and Enzyme Activities after Training in Boys 11–13 Years Old. Acta Physiol. Scand. 1973, 87, 485–497. [Google Scholar] [CrossRef]
- Strzała, M.; Tyka, A. Physical Endurance, Somatic Indices and Swimming Technique Parameters as Determinants of Front Crawl Swimming Speed at Short Distances in Young Swimmers. Med. Sport. 2009, 13, 99–107. [Google Scholar] [CrossRef]
- Moreira, M.F.; Morais, J.E.; Marinho, D.A.; Silva, A.J.; Barbosa, T.M.; Costa, M.J. Growth influences biomechanical profile of talented swimmers during the summer break. Sport. Biomech. 2014, 13, 62–74. [Google Scholar] [CrossRef]
- Zamparo, P.; Lazzer, S.; Antoniazzi, C.; Cedolin, S.; Avon, R.; Lesa, C. The interplay between propelling efficiency, hydrodynamic position and energy cost of front crawl in 8 to 19-year-old swimmers. Eur. J. Appl. Physiol. 2008, 104, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Morouço, P.G.; Vilas-Boas, J.P.; Fernandes, R.J. Evaluation of adolescent swimmers through a 30-s tethered test. Pediatr. Exerc. Sci. 2012, 24, 312–321. [Google Scholar] [CrossRef]
- Papoti, M.; Da Silva, A.S.R.; Araujo, G.G.; Santiago, V.; Martins, L.E.B.; Cunha, S.A.; Gobatto, C.A. Aerobic and anaerobic performances in tethered swimming. Int. J. Sports Med. 2013, 34, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Taeymans, J.; Clarys, P.; Abidi, H.; Hebbelinck, M.; Duquet, W. Developmental changes and predictability of static strength in individuals of different maturity: A 30-year longitudinal study. J. Sports Sci. 2009, 27, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, T.M.; Costa, M.; Marinho, D.A.; Coelho, J.; Moreira, M.; Silva, A.J. Modeling the links between young swimmers’ performance: Energetic and biomechanic profiles. Pediatr. Exerc. Sci. 2010, 22, 379–391. [Google Scholar] [CrossRef]
- Ruiz-Navarro, J.J.; López-Belmonte, Ó.; Gay, A.; Cuenca-Fernández, F.; Arellano, R. A new model of performance classification to standardize the research results in swimming. Eur. J. Sport Sci. 2022, 23, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Aandstad, A.; Holtberget, K.; Hageberg, R.; Holme, I.; Anderssen, S.A. Validity and reliability of bioelectrical impedance analysis and skinfold thickness in predicting body fat in military personnel. Mil. Med. 2014, 179, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.S.; Pollock, M.L.; Graves, J.E.; Mahar, M.T. Reliability and validity of bioelectrical impedance in determining body composition. J. Appl. Physiol. 1988, 64, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Sokołowski, K.; Bartolomeu, R.F.; Barbosa, T.M.; Strzała, M. VO2 kinetics and tethered strength influence the 200-m front crawl stroke kinematics and speed in young male swimmers. Front. Physiol. 2022, 13, 1045178. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, C.J. An Effect Size Primer: A Guide for Clinicians and Researchers. Prof. Psychol. Res. Pract. 2009, 40, 532–538. [Google Scholar] [CrossRef]
- Olbrecht, J. The Science of Winning: Planning, Periodizing and Optimizing Swim Training; Swimtraxx Publishing: Leuven, Belgium, 2000. [Google Scholar]
- Troup, J.P.; Hollander, A.P.; Bone, M.; Trappe, S.; Barzdukas, A.P. Performance-related differences in the anaerobic contribution of competitive freestyle swimmers. In Biomechanics and Medicine in Swimming V1; Taylor & Francis: Abingdon, UK, 1992; pp. 271–278. [Google Scholar]
- Baxter-Jones, A.; Goldstein, H.; Helms, P. The development of aerobic power in young athletes. J. Appl. Physiol. 1993, 75, 1160–1167. [Google Scholar] [CrossRef] [PubMed]
- Strzała, M.; Sokołowski, K.; Wądrzyk, Ł.; Staszkiewicz, R.; Kryst, Ł.; Żegleń, M.; Krężałek, P.; Maciejczyk, M. Oxygen uptake kinetics and biological age in relation to pulling force and 400-m front crawl performance in young swimmers. Front. Physiol. 2023, 14, 1229007. [Google Scholar] [CrossRef]
- Kjendlie, P.L.; Stallman, R.K.; Stray-Gundersen, J. Adults have lower stroke rate during submaximal front crawl swimming than children. Eur. J. Appl. Physiol. 2004, 91, 649–655. [Google Scholar] [CrossRef]
- Mezzaroba, P.V.; Machado, F.A. Effect of Age, Anthropometry, and Distance in Stroke Parameters of Young Swimmers. Artic. Int. J. Sport. Physiol. Perform. 2013, 9, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.C.; Garrido, N.D.; Cuenca-Fernández, F.; Marinho, D.A.; Costa, M.J. Performance Tiers within a Competitive Age Group of Young Swimmers Are Characterized by Different Kinetic and Kinematic Behaviors. Sensors 2023, 23, 5113. [Google Scholar] [CrossRef]
- Alves, M.; Carvalho, D.D.; Fernandes, R.J.; Vilas-Boas, J.P. How Anthropometrics of Young and Adolescent Swimmers Influence Stroking Parameters and Performance? A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 2543. [Google Scholar] [CrossRef] [PubMed]
- Morais, J.E.; Forte, P.; Silva, A.J.; Barbosa, T.M.; Marinho, D.A. Data Modeling for Inter- and Intra-Individual Stability of Young Swimmers’ Performance: A Longitudinal Cluster Analysis. Res. Q. Exerc. Sport 2021, 92, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, P.; Silva, A.; Sampaio, A.; Paulo Vilas-Boas, J.; Fernandes, R.J. Front Crawl Sprint Performance: A Cluster Analysis of Biomechanics, Energetics, Coordinative, and Anthropometric Determinants in Young Swimmers. Mot. Control. 2016, 20, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Dormehl, S.J.; Robertson, S.J.; Williams, C.A. How Confident Can We Be in Modelling Female Swimming Performance in Adolescence? Sports 2016, 4, 16. [Google Scholar] [CrossRef] [PubMed]
Mean | SD | Min | Max | |
---|---|---|---|---|
BA (years) | 13.98 | 1.91 | 10.80 | 18.00 |
60Fave (N) | 52.33 | 9.43 | 37.28 | 75.8 |
VO2peak (L·min−1) | 2.18 | 0.53 | 1.21 | 3.6 |
SR (cycle·min−1) | 47.56 | 9.43 | 37.28 | 75.8 |
SL (m) | 1.75 | 0.17 | 1.37 | 2.08 |
AS (cm) | 160.85 | 51.6 | 148 | 173 |
v100 (m·s−1) | 1.38 | 0.08 | 1.23 | 1.53 |
BA (Years) | 60Fave (N) | AS (cm) | SL (m) | SR (Cycle·min−1) | VO2peak (L·min−1) | v100 (m·s−1) | |
---|---|---|---|---|---|---|---|
BA | 1.00 p = --- | 0.72 p < 0.01 | 0.76 p < 0.01 | 0.26 p = 0.11 | −0.04 p = 0.81 | 0.57 p < 0.01 | 0.40 p = 0.01 |
60Fave | 0.72 p < 0.01 | 1.0000 p = --- | 0.69 p < 0.01 | 0.15 p = 0.36 | 0.22 p = 0.17 | 0.44 p < 0.01 | 0.69 p < 0.01 |
AS | 0.76 p < 0.01 | 0.69 p < 0.01 | 1.00 p = --- | 0.27 p = 0.09 | −0.06 p = 0.70 | 0.61 p < 0.01 | 0.38 p = 0.02 |
SL | 0.26 p = 0.11 | 0.15 p = 0.36 | 0.27 p = 0.09 | 1.00 p = --- | −0.85 p < 0.01 | 0.51 p = 0.001 | 0.24 p = 0.13 |
SR | −0.04 p = 0.8 | 0.22 p = 0.17 | −0.064 p = 0.70 | −0.85 p < 0.01 | 1.00 p = --- | −0.26 p = 0.12 | 0.30 p = 0.06 |
VO2peak | 0.57 p < 0.01 | 0.44 p < 0.01 | 0.61 p < 0.01 | 0.51 p < 0.01 | −0.26 p = 0.115 | 1.00 p = --- | 0.43 p < 0.01 |
v100 | 0.40 p = 0.01 | 0.69 p < 0.01 | 0.38 p = 0.02 | 0.24 p = 0.13 | 0.30 p = 0.06 | 0.43 p < 0.01 | 1.0000 p = --- |
Variables | Cluster 1 N = 23 | Cluster 2 N = 6 | Cluster 3 N = 10 | F Statistics | p-Value | ηp2 | Games–Howell |
---|---|---|---|---|---|---|---|
v100 (m·s−1) | 1.39 (0.08) | 1.41 (0.05) | 1.31 (0.06) | 4.30 | 0.02 | 0.19 | 1 vs. 2 |
2 vs. 3 * | |||||||
1 vs. 3 * | |||||||
BA (years) | 14.07 (0.96) | 17.05 (1.53) | 11.94 (0.95) | 44.03 | <0.000001 | 0.71 | 1 vs. 2 * |
2 vs. 3 ** | |||||||
1 vs. 3 ** | |||||||
BH (cm) | 160.47 (2.28) | 166.02 (2.91) | 153.65 (5.62) | 25.25 | <0.000001 | 0.58 | 1 vs. 2 * |
2 vs. 3 ** | |||||||
1 vs. 3 * | |||||||
FFM (kg) | 38.7 (2.71) | 44.73 (3.44) | 32.13 (2.98) | 37.52 | <0.000001 | 0.66 | 1 vs. 2 * |
2 vs. 3 ** | |||||||
1 vs. 3 ** | |||||||
AS (cm) | 161.57 (2.13) | 168.33 (2.66) | 154.7 (4.08) | 45.76 | <0.000001 | 0.72 | 1 vs. 2 * |
2 vs. 3 ** | |||||||
1 vs. 3 * | |||||||
SR (cycle·min−1) | 46.93 (4.55) | 48.42 (5.0) | 48.59 (5.35) | 0.52 | 0.60 | 0.03 | 1 vs. 2 |
2 vs. 3 | |||||||
1 vs. 3 | |||||||
SL (m) | 1.79 (0.13) | 1.77 (0.19) | 1.65 (0.19) | 2.82 | 0.07 | 0.14 | 1 vs. 2 |
2 vs. 3 | |||||||
1 vs. 3 | |||||||
60Fave (N) | 53.75 (7.0) | 62.5 (10.57) | 42.94 (4.6) | 15.24 | 0.00002 | 0.46 | 1 vs. 2 |
2 vs. 3 * | |||||||
1 vs. 3 ** | |||||||
VO2peak (L·min−1) | 2.26 (0.45) | 2.63 (0.57) | 1.71 (0.33) | 8.96 | 0.0007 | 0.33 | 1 vs. 2 |
2 vs. 3 * | |||||||
1 vs. 3 * |
Variables | B | Beta | rsemi | % of Variance | t | p | |
---|---|---|---|---|---|---|---|
R2 = 0.603 Adjusted R2 = 0.543 F (5,33) = 10.03; p < 0.00001 | 60Fave | 0.006 | 0.79 | 0.47 | 21.99 | 4.28 | 0.0002 |
VO2peak | 0.058 | 0.40 | 0.30 | 8.91 | 2.72 | 0.01 | |
SR | 0.003 | 0.20 | 0.18 | 3.17 | 1.62 | 0.11 | |
AS | −0.0003 | −0.23 | −0.14 | 1.85 | −1.24 | 0.22 | |
BA | −0.009 | −0.21 | −0.12 | 1.5 | −1.12 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokołowski, K.; Krężałek, P.; Wądrzyk, Ł.; Żegleń, M.; Strzała, M. Does Higher Maturation Make Age-Grouped Swimmers Faster? A Study on Pubertal Female Swimmers. Appl. Sci. 2025, 15, 1171. https://doi.org/10.3390/app15031171
Sokołowski K, Krężałek P, Wądrzyk Ł, Żegleń M, Strzała M. Does Higher Maturation Make Age-Grouped Swimmers Faster? A Study on Pubertal Female Swimmers. Applied Sciences. 2025; 15(3):1171. https://doi.org/10.3390/app15031171
Chicago/Turabian StyleSokołowski, Kamil, Piotr Krężałek, Łukasz Wądrzyk, Magdalena Żegleń, and Marek Strzała. 2025. "Does Higher Maturation Make Age-Grouped Swimmers Faster? A Study on Pubertal Female Swimmers" Applied Sciences 15, no. 3: 1171. https://doi.org/10.3390/app15031171
APA StyleSokołowski, K., Krężałek, P., Wądrzyk, Ł., Żegleń, M., & Strzała, M. (2025). Does Higher Maturation Make Age-Grouped Swimmers Faster? A Study on Pubertal Female Swimmers. Applied Sciences, 15(3), 1171. https://doi.org/10.3390/app15031171