The Numerical Simulation of the Transient Plane Heat Source Method to Measure the Thermophysical Properties of Materials
Abstract
:1. Introduction
2. Mathematical Formulation
3. Finite Element Simulation Method
3.1. Numerical Simulation Settings
3.2. Stationary Study
3.3. Transient Simulation
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ISO 22007-2; Determination of Thermal Conductivity and Thermal Diffusivity—Part 2: Transient Plane Heat Source (Hot Disc) Method. ISO Copyright Office: Geneva, Switzerland, 2022.
- ASTM C 518-21; Standard test method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. ASTM: West Conshohocken, PA, USA, 2021. Available online: https://www.astm.org/standards/c518/ (accessed on 28 September 2021).
- Gustafsson, S.E. On the development of the hot strip, hot disc, and pulse hot strip methods for measuring thermal transport properties. In Proceedings of the 2014 32nd International Thermal Conductivity Conference, Purdue University, West Lafayette, IN, USA, 27 April–1 May 2014; pp. 563–575. [Google Scholar]
- ASTM D 5930-17; Standard Test Method for Thermal Conductivity of Plastics by Means of a Transient Line-Source Technique. ASTM: West Conshohocken, PA, USA, 2017. Available online: https://www.astm.org/d5930-17.html/ (accessed on 18 August 2017).
- Karalasingam, A.; Karunarathne, S.; Wijesinghe, W.; Sameera, S.; De Silva, M.; Amaratunga, G. Influence of graphene nanoplatelets on the thermal conductivity of heat transfer oils based on the developed hotwire method. Phys. Scr. 2024, 99, 095915. [Google Scholar] [CrossRef]
- Maqsood, A.; Anis-ur-Rehman, M. Transient plane source (tps) sensors for simultaneous measurements of thermal conductivity and thermal diffusivity of insulators, fluids and conductors. In Proceedings of the 2013 1st International Conference on Sensing for Industry, Control, Communications, & Security Technologies (ICSICCST 2013), Indus University, Karachi, Pakistan, 24–26 June 2013; pp. 111–123. [Google Scholar]
- Valalaki, K.; Nassiopoulou, A. Improved approach for determining thin layer thermal conductivity using the 3ω method. Application to porous Si thermal conductivity in the temperature range 77–300 K. J. Phys. D Appl. Phys. 2017, 50, 195302. [Google Scholar] [CrossRef]
- Zhao, J.; Shumuye, E.D.; Wang, Z. Thermal conductivity and shrinkage properties of slag-based cement concretes. In Proceedings of the 2021 5th International Conference on Civil Engineering, Architectural and Environmental Engineering, Chengdu, China, 23–25 April 2021; pp. 279–286. [Google Scholar]
- Xin, Q.; Yang, T.; She, X.; Gao, Y.; Cao, Y. Experimental and modeling investigation of thermal conductivity of Shenyang silty clay under unfrozen and frozen states by Hot Disk method. Int. Commun. Heat Mass Transf. 2022, 132, 105882. [Google Scholar] [CrossRef]
- Zhu, J.; Xiong, J.Y. Logic operation and all-optical switch characteristics of graphene surface plasmons. Opt. Express 2023, 31, 36677. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Z.; Wang, Q. Evaluation of thermally regenerative electrochemical cycle for thermal-to-electrical energy conversion. Appl. Phys. Lett. 2023, 122, 0146725. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Chen, Y.G.; Wang, T.; Zhu, Q.; Gu, M. Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters. Opto-Electron. Adv. 2024, 7, 230194. [Google Scholar] [CrossRef]
- Bheekhun, N.; Abu Talib, A.R.; Hassan, M.R. Aerogels in aerospace: An overview. Adv. Mater. Sci. Eng. 2013, 2013, 406065. [Google Scholar] [CrossRef]
- Liang, S.R.; Cheng, S.B.; Zhang, H.F.; Yang, W.X.; Yi, Z.; Zeng, Q.D.; Tang, B.; Wu, P.; Ahmad, S.; Sun, T.; et al. Structural color tunable intelligent mid-infrared thermal control emitter. Ceram. Int. 2024, 50, 23611–23620. [Google Scholar] [CrossRef]
- Liu, Y.C.; Ma, X.M.; Chao, K.; Sun, F.; Chen, Z.; Shan, J.; Chen, H.; Zhao, G.; Chen, S. Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium. Opto-Electron. Sci. 2024, 3, 230027. [Google Scholar] [CrossRef]
- El Fgaier, F.; Lafhaj, Z.; Antczak, E.; Chapiseau, C. Dynamic thermal performance of three types of unfired earth bricks. Appl. Therm. Eng. 2016, 93, 377–383. [Google Scholar] [CrossRef]
- Headley, A.J.; Hileman, M.B.; Robbins, A.S.; Piekos, E.S.; Stirrup, E.K.; Roberts, C.C. Thermal conductivity measurements and modeling of ceramic fiber insulation materials. Int. J. Heat Mass Transf. 2019, 129, 1287–1294. [Google Scholar] [CrossRef]
- Mahlia, T.; Taufiq, B.; Masjuki, H. Correlation between thermal conductivity and the thickness of selected insulation materials for building wall. Energy Build. 2007, 39, 182–187. [Google Scholar] [CrossRef]
- Colinart, T.; Pajeot, M.; Vinceslas, T.; De Menibus, A.H.; Lecompte, T. Thermal conductivity of biobased insulation building materials measured by hot disk: Possibilities and recommendation. J. Build. Eng. 2021, 43, 102858. [Google Scholar] [CrossRef]
- Gustafsson, S.E.; Mihiretie, B.M.; Gustavsson, M.K. Measurement of Thermal Transport in Solids with the Hot Disc Method. Int. J. Thermophys. 2024, 45, 1. [Google Scholar] [CrossRef]
- Tarasovs, S.; Bulderberga, O.; Zeleniakiene, D.; Aniskevich, A. Sensitivity of the Transient Plane Source Method to Small Variations of Thermal Conductivity. Int. J. Thermophys. 2021, 42, 173. [Google Scholar] [CrossRef]
- Jiang, J.X.; Yi, Y.T.; Sun, T.Y.; Song, Q.J.; Yi, Z.; Tang, C.J.; Zeng, Q.D.; Cheng, S.B.; Wu, P.H. A bi-directional metamaterial perfect absorber based on gold grating and TiO2-InAs normal hexagonal pattern film. Sol. Energy Mater. Sol. Cells 2025, 281, 113330. [Google Scholar] [CrossRef]
- Jiang, S.L.; Chen, F.F.; Zhao, Y.; Gao, S.F.; Wang, Y.Y.; Ho, H.L.; Jin, W. Broadband all-fiber optical phase modulator based on photo-thermal effect in a gas-filled hollow-core fiber. Opto-Electron. Adv. 2023, 6, 220085. [Google Scholar] [CrossRef]
- Xiao, Y.F.; Ma, C.; Sun, T.Y.; Song, Q.J.; Bian, L.; Yi, Z.; Hao, Z.Q.; Tang, C.J.; Wu, P.H.; Zeng, Q.D. Investigation of a high-performance solar absorber and thermal emitter based on Ti and InAs. J. Mater. Chem. A 2024, 12, 29145. [Google Scholar] [CrossRef]
- Soares, V.; McCague, C.; Pascal, K.; Alvar, E.N.; Bahrami, M. Measuring Thermal Conductivity of Single Thickness Fibrous Gas Diffusion Layers Using Transient Plane Source Method. In Proceedings of the 2023 ESC Meeting, Gothenburg, Sweden, 8–12 October 2023; p. 1770. [Google Scholar]
- Gustafsson, S.E. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum. 1991, 62, 797–804. [Google Scholar] [CrossRef]
- Jannot, Y.; Schaefer, S.; Degiovanni, A.; Bianchin, J.; Fierro, V.; Celzard, A. A new method for measuring the thermal conductivity of small insulating samples. Rev. Sci. Instrum. 2019, 90, 5065562. [Google Scholar] [CrossRef]
- Gustavsson, M.; Karawacki, E.; Gustafsson, S.E. Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors. Rev. Sci. Instrum. 1994, 65, 3856–3859. [Google Scholar] [CrossRef]
- Basu, A.; Saha, A.; Banerjee, S.; Roy, P.C.; Kundu, B. A Review of Artificial Intelligence Methods in Predicting Thermophysical Properties of Nanofluids for Heat Transfer Applications. Energies 2024, 17, 1351. [Google Scholar] [CrossRef]
- Xie, X.; Pang, Y.; Rao, S.; Zeng, C.; Zhang, L.; Zhang, C.; Guo, S.; Xu, J.; Zeng, X.; Sun, R. Thermal Interface Materials with High Adhesion and Enhanced Thermal Conductivity via Optimization of Polydimethylsiloxane Networks and Aluminum Fillers. ACS Appl. Polym. Mater. 2024, 6, 12765–12773. [Google Scholar] [CrossRef]
- Aghayari, R.; Rohani, S.; Ghasemi, N.; Heiran, E.N.K.; Mazaheri, H. Numerical investigation of heat transfer in a helically coiled tube using copper/water nano-fluid under constant heat flux and prediction of the results using perceptron and radial basis function networks. Heat Mass Transf. 2020, 56, 1051–1075. [Google Scholar] [CrossRef]
- Xiong, Q.; Tayebi, T.; Izadi, M.; Siddiqui, A.A.; Ambreen, T.; Li, L.K.B. Numerical analysis of porous flat plate solar collector under thermal radiation and hybrid nanoparticles using two-phase model. Sustain. Energy Technol. Assess. 2021, 47, 101404. [Google Scholar] [CrossRef]
- Yang, L.; Ji, W.; Huang, J.-N.; Xu, G. An updated review on the influential parameters on thermal conductivity of nano-fluids. J. Mol. Liq. 2019, 296, 111780. [Google Scholar] [CrossRef]
- Elkholy, A.; Sadek, H.; Kempers, R. An improved transient plane source technique and methodology for measuring the thermal properties of anisotropic materials. Int. J. Therm. Sci. 2019, 135, 362–374. [Google Scholar] [CrossRef]
- Zheng, Q.; Kaur, S.; Dames, C.; Prasher, R.S. Analysis and improvement of the hot disk transient plane source method for low thermal conductivity materials. Int. J. Heat. Mass. Transf. 2020, 151, 119331. [Google Scholar] [CrossRef]
- Mihiretie, B.; Cederkrantz, D.; Rosén, A.; Otterberg, H.; Sundin, M.; Gustafsson, S.; Karlsteen, M. Finite element modeling of the Hot Disc method. Int. J. Heat. Mass. Transf. 2017, 115, 216–223. [Google Scholar] [CrossRef]
- Cheng, S.B.; Li, W.X.; Zhang, H.F.; Akhtar, M.N.; Yi, Z.; Zeng, Q.D.; Ma, C.; Sun, T.Y.; Wu, P.H.; Ahmad, S. High sensitivity five band tunable metamaterial absorption device based on block like Dirac semimetals. Opt. Commun. 2024, 569, 130816. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.-M.; Tao, W.-Q. Theoretical accuracy of anisotropic thermal conductivity determined by transient plane source method. Int. J. Heat. Mass. Transf. 2017, 108, 1634–1644. [Google Scholar] [CrossRef]
- Li, W.; Cheng, S.; Zhang, H.; Yi, Z.; Tang, B.; Ma, C.; Wu, P.; Zeng, Q.; Raza, R. Multi-functional metasurface: Ul-tra-wideband/multi-band absorption switching by adjusting guided mode resonance and local surface plasmon resonance effects. Commun. Theor. Phys. 2024, 76, 065701. [Google Scholar] [CrossRef]
- Zeng, C.; Lu, H.; Mao, D.; Du, Y.Q.; Hua, H.; Zhao, W.; Zhao, J. Graphene-empowered dynamic metasurfaces and metade-vices. Opto-Electron. Adv. 2022, 5, 200098. [Google Scholar] [CrossRef]
- Zeng, Z.L.; Li, H.F.; Zhang, H.F.; Cheng, S.B.; Yi, Y.G.; Yi, Z.; Wang, J.Q.; Zhang, J.G. Tunable ultra-sensitive four-band terahertz sensors based on Dirac semimetals. Photonic Nanostruct.—Fundam. Appl. 2025, 63, 101347. [Google Scholar] [CrossRef]
- Malinarič, S.; Dieška, P. Concentric circular strips model of the transient plane source-sensor. Int. J. Thermophys. 2015, 36, 692–700. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Z.Y.; Yi, Z.; Cheng, S.B.; Ma, C.; Tang, B.; Sun, T.Y.; Yu, S.J.; Li, G.F.; Ahmad, S. A wide-band solar absorber based on tungsten nano-strip resonator group and graphene for near-ultraviolet to near-infrared region. Diam. Relat. Mater. 2024, 142, 110843. [Google Scholar] [CrossRef]
- He, M.Y.; Wang, Q.Q.; Zhang, H.; Xiong, J.; Liu, X.P.; Wang, J.Q. Analog electromagnetic induced transparency of T-type Si-based metamaterial and its applications. Phys. Scr. 2024, 99, 035506. [Google Scholar] [CrossRef]
- Li, W.X.; Liu, M.S.; Cheng, S.B.; Zhang, H.F.; Yang, W.X.; Yi, Z.; Zeng, Q.D.; Tang, B.; Ahmad, S.; Sun, T.Y. Po-lar-ization independent tunable bandwidth absorber based on single-layer graphene. Diam. Relat. Mater. 2024, 142, 110793. [Google Scholar] [CrossRef]
- Mao, Y.; Zhang, H.; Xiong, J.; Liu, X.P.; Wang, Q.Q.; Wang, J.Q. Controlling of spontaneous emission of quantum dots based on hyperbolic metamaterials. J. Phys. D Appl. Phys. 2024, 57, 255111. [Google Scholar] [CrossRef]
- Xiong, Z.H.; Wang, B. Metamaterial of sodium-graphene for bifunctional perfect absorber. Appl. Phys. Lett. 2023, 122, 232203. [Google Scholar] [CrossRef]
- Zhu, J.; Xiong, J.Y. Tunable terahertz graphene metamaterial optical switches and sensors based on plasma-induced transparency. Measurement 2023, 220, 113302. [Google Scholar] [CrossRef]
- Guo, Z.; Li, Z.; Zhang, J.; Guo, K.; Shen, F.; Zhou, Q.; Zhou, H. Review of the functions of Archimedes’ spiral metallic nanostructures. Nanomaterials 2017, 7, 405. [Google Scholar] [CrossRef]
- Holland, H. The archimedes spiral. Nature 1957, 179, 432–433. [Google Scholar] [CrossRef]
- Cao, T.; Lian, M.; Chen, X.Y.; Mao, L.B.; Liu, K.; Jia, J.; Su, Y.; Ren, H.; Zhang, S.; Xu, Y.; et al. Multi-cycle reconfigurable THz extraordinary optical transmis-sion using chalcogenide metamaterials. Opto-Electron. Sci. 2022, 1, 210010. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, W.M.; Song, Q.J.; Yi, Z.; Ma, C.; Cheng, S.B.; Hao, Z.Q.; Sun, T.Y.; Wu, P.H.; Tang, C.J.; et al. Thermotunable mid-infrared metamaterial absorption material based on combined hollow cylindrical VO2 structure. Surf. Interfaces 2024, 52, 104868. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Y.H.; Ling, L.; Sheng, Z.X.; Yi, Z.; Zhou, Z.G.; Yang, Y.J.; Tang, B.; Zeng, Q.D.; Sun, T.Y. Multifunctional terahertz device with active switching between bimodal perfect absorption and plasmon-induced transparency. Mater. Res. Bull. 2024, 171, 112635. [Google Scholar] [CrossRef]
- Li, W.; Yi, Y.; Yang, H.; Cheng, S.; Yang, W.X.; Zhang, H.; Yi, Z.; Yi, Y.; Li, H. Active Tunable Terahertz Band-width Absorber Based on single layer Graphene. Commun. Theor. Phys. 2023, 75, 045503. [Google Scholar] [CrossRef]
- Bejan, A.; Kraus, A.D. Heat Transfer Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 1, pp. 33–37. [Google Scholar]
- Grujicic, M.; Zhao, C.; Dusel, E. The effect of thermal contact resistance on heat management in the electronic packaging. Appl. Surf. Sci. 2005, 246, 290–302. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, L.; Chen, T.; Su, G. Simulation based analysis of electrical fire risks caused by poor electric contact between plug and receptacle. Fire Saf. J. 2021, 126, 103434. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Cheng, S.B.; Zhang, H.F.; Yi, Z.; Tang, B.; Chen, J.; Zhang, J.G.; Tang, C.J. Ultra wideband absorption absorber based on Dirac semimetallic and graphene metamaterials. Phys. Lett. A 2024, 517, 129675. [Google Scholar] [CrossRef]
- Li, X.; Chen, Q.M.; Zhang, X.; Zhao, R.Z.; Xiao, S.M.; Wang, Y.; Huang, L. Time-sequential color code division multiplexing holographic display with metasurface. Opto-Electron. Adv. 2023, 6, 220060. [Google Scholar] [CrossRef]
- Zhu, X.Q.; Wang, B. Hybrid nanostructure with two-dimensional grating for resonance waves self-referenced sensing. Appl. Phys. Lett. 2023, 123, 202202. [Google Scholar] [CrossRef]
- Xu, D.Y.; Xu, W.H.; Yang, Q.; Zhang, W.S.; Wen, S.C.; Luo, H. All-optical object identification and three-dimensional reconstruction based on optical computing metasurface. Opto-Electron. Adv. 2023, 6, 230120. [Google Scholar] [CrossRef]
- Tang, C.J.; Nie, Q.M.; Cai, P.G.; Liu, F.X.; Gu, P.; Yan, Z.D.; Huang, Z.; Zhu, M.W. Ultra-broadband near-infrared absorption enhancement of monolayer graphene by multiple-resonator approach. Diam. Relat. Mater. 2024, 141, 110607. [Google Scholar] [CrossRef]
- Brown, K.J.; Byrne, G.; O’Donovan, T.S.; Murray, D.B. Effect of thermal boundary condition on heat dissipation due to swirling jet impingement on a heated plate. In Proceedings of the 2012 6th European Thermal Sciences Conference, Poitiers, France, 4–7 September 2012; pp. 338–339. [Google Scholar]
- Madsen, J.; Trefny, J. Boundary effects in transient thermal measurements. J. Phys. E Sci. Instrum. 1987, 20, 1362. [Google Scholar] [CrossRef]
- Zhang, H.; Jin, Y.; Gu, W.; Li, Z.Y.; Tao, W.Q. A numerical study on the influence of insulating layer of the hot disk sensor on the thermal conductivity measuring accuracy. Prog. Comput. Fluid Dyn. Int. J. 2013, 13, 191–201. [Google Scholar] [CrossRef]
Category | Width (μm) | Kapton Radius (mm) | Thickness (μm) | Total Thickness (μm) |
---|---|---|---|---|
Sensor I | 200 | 6.4 | 10 | 50 |
Sensor II | 300 | 14 | 10 | 50 |
Category | (μm) | (μm) | Number of Laps | Spacing (μm) | Resistance (Ω) |
---|---|---|---|---|---|
Sensor I | 200 | 6400 | 16 | 200 | 11.885 |
Sensor II | 300 | 14,000 | 20 | 300 | 21.340 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Zhang, S.; Shi, P.; Yi, Z.; Yi, Y.; Zeng, Q. The Numerical Simulation of the Transient Plane Heat Source Method to Measure the Thermophysical Properties of Materials. Appl. Sci. 2025, 15, 544. https://doi.org/10.3390/app15020544
Sun J, Zhang S, Shi P, Yi Z, Yi Y, Zeng Q. The Numerical Simulation of the Transient Plane Heat Source Method to Measure the Thermophysical Properties of Materials. Applied Sciences. 2025; 15(2):544. https://doi.org/10.3390/app15020544
Chicago/Turabian StyleSun, Jianyuan, Siwen Zhang, Pengcheng Shi, Zao Yi, Yougen Yi, and Qingdong Zeng. 2025. "The Numerical Simulation of the Transient Plane Heat Source Method to Measure the Thermophysical Properties of Materials" Applied Sciences 15, no. 2: 544. https://doi.org/10.3390/app15020544
APA StyleSun, J., Zhang, S., Shi, P., Yi, Z., Yi, Y., & Zeng, Q. (2025). The Numerical Simulation of the Transient Plane Heat Source Method to Measure the Thermophysical Properties of Materials. Applied Sciences, 15(2), 544. https://doi.org/10.3390/app15020544