Synergistic Effects of a Rotating Magnetic Field and Pulsed Light on Key Quality Characteristics of Refrigerated Pork: A Novel Approach to Shaping Food Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Meat Processing
2.3. Methods
2.3.1. Chemical Composition
2.3.2. Physicochemical and Microbiological Properties
2.3.3. Color Measurement
2.3.4. Measurement of Texture
2.3.5. Sensory Evaluation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. Physicochemical and Microbiological Properties
3.2.1. Physicochemical Characteristics of Meat
3.2.2. Microbiological Characteristics of Meat
3.3. Color Results
3.4. Textural Analysis
3.5. Sensory Characteristic
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, J.; Shao, S.; Tian, C. Effects of the magnetic field on the freezing parameters of the pork. Int. J. Refrig. 2019, 107, 31–38. [Google Scholar] [CrossRef]
- Holzwarth, M.; Korhummel, S.; Carle, R.; Kammerer, D.R. Evaluation of the effects of different freezing and thawing methods on color, polyphenol and ascorbic acid retention in strawberries (Fragaria × ananassa Duch.). Food Res. Int. 2012, 48, 241–248. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, J.; Guo, Z.; Wang, D.; Chen, J.; Liu, Q.; Ding, C.; Guo, L.; Tao, T. Magnetic field technology in improving the quality of food refrigeration and freezing: Mechanisms, applications, and challenges. J. Stored Prod. Res. 2024, 106, 102254. [Google Scholar] [CrossRef]
- Iulietto, M.F.; Sechi, P.; Borgogni, E.; Cenci-Goga, B.T. Meat Spoilage: A Critical Review of a Neglected Alteration Due to Ropy Slime Producing Bacteria. Ital. J. Anim. Sci. 2015, 14, 4011. [Google Scholar] [CrossRef]
- Guo, L.; Azam, S.M.R.; Guo, Y.; Liu, D.; Ma, H. Germicidal efficacy of the pulsed magnetic field against pathogens and spoilage microorganisms in food processing: An overview. Food Control. 2022, 136, 108496. [Google Scholar] [CrossRef]
- Lin, L.; Liao, X.; Li, C.Z.; Abdel-Samie, M.; Cui, H. Inhibitory Effect of Cold Nitrogen Plasma on Salmonella Typhimurium Biofilm and Its Application on Poultry Egg Preservation. LWT 2020, 126, 109340. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Z.; Zhao, S.; Luo, N.; Deng, Q. Effect of Combined Pulsed Magnetic Field and Cold Water Shock Treatment on the Preservation of Cucumbers during Postharvest Storage. Food Bioprocess Technol. 2020, 13, 732–738. [Google Scholar] [CrossRef]
- Batool, A.; Rasheed, T.; Hafeez, M.B.; Zahra, N.; Kausar, A.; Raza, A. Magnetic field and agriculture sustainability. Transdiscip. J. Eng. Sci. 2022, 13. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, M.; Mujumdar, A.S.; Chen, B. Comparative freezing study of broccoli and cauliflower: Effects of electrostatic field and static magnetic field. Food Chem. 2022, 397, 133751. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, L.; Wang, H.; Fan, W.; Hu, Y.; Tu, Z. Magnetic Field: A Non- Thermal Technology in Food Processing. Food Control 2024, 166, 110692. [Google Scholar] [CrossRef]
- Li, W.; Ma, H.; He, R.; Ren, X.; Zhou, C. Prospects and application of ultrasound and magnetic fields in the fermentation of rare edible fungi. Ultrason. Sonochem. 2021, 76, 105613. [Google Scholar] [CrossRef]
- Sun, L.; Zhu, Z.; Sun, D.-W. Regulating ice formation for enhancing frozen food quality: Materials, mechanisms and challenges. Trends Food Sci. Technol. 2023, 139, 104116. [Google Scholar] [CrossRef]
- Yang, K.; Wu, D.; Wang, L.; Wang, X.; Ma, J.; Sun, W. Direct current magnetic field: An optional strategy for reducing pyrophosphate in gelatinous meat products. LWT—Food Sci. Technol. 2022, 169, 114018. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, Y.; Yang, K.; Yin, X.; Ma, J.; Li, Z.; Sun, W.; Han, M. Effect of low-frequency magnetic field on the gel properties of pork myofibrillar proteins. Food Chem. 2019, 274, 775–781. [Google Scholar] [CrossRef]
- Afzal, I.; Saleem, S.; Skalicky, M.; Javed, T.; Bakhtavar, M.A.; ul Haq, Z.; Kamran, M.; Shahid, M.; Sohail Saddiq, M.; Afzal, A.; et al. Magnetic Field Treatments Improves Sunflower Yield by Inducing Physiological and Biochemical Modulations in Seeds. Molecules 2021, 26, 2022. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.; Lee, D.; Ko, D.; Jun, S. Effects of pulsed electric field (PEF) and oscillating magnetic field (OMF) on supercooling preservation of beef at different fat levels. Int. J. Refrig. 2022, 136, 36–45. [Google Scholar] [CrossRef]
- Novickij, V.; Stanevičienė, R.; Gruškienė, R.; Badokas, K.; Lukša, J.; Sereikaitė, J.; Mažeika, K.; Višniakov, N.; Novickij, J.; Servienė, E. Inactivation of Bacteria Using Bioactive Nanoparticles and Alternating Magnetic Fields. Nanomaterials 2021, 11, 342. [Google Scholar] [CrossRef]
- Heinrich, V.; Zunabovic, M.; Varzakas, T.; Bergmair, J.; Kneifel, W. Pulsed light treatment of different food types with a special focus on meat: A critical review. Crit. Rev. Food Sci. Nutr. 2016, 56, 591–613. [Google Scholar] [CrossRef]
- Gomez-Lopez, V.M.; Ragaert, P.; Debevere, J.; Devlieghere, F. Pulsed light for food decontamination: A review. Trends Food Sci. Technol. 2007, 18, 464–473. [Google Scholar] [CrossRef]
- Duarte-Molina, F.; Gomez, P.L.; Agueda Castro, M.; Alzamora, S.M. Storage quality of strawberry fruit treated by pulsed light: Fungal decay, water loss and mechanical properties. Innov. Food Sci. Emerg. 2016, 34, 267–274. [Google Scholar] [CrossRef]
- Ramos-Villarroel, A.Y.; Martín-Belloso, O.; Soliva-Fortuny, R. Combined effects of malic acid dip and pulsed light treatments on the inactivation of Listeria innocua and Escherichia coli on fresh-cut produce. Food Control. 2015, 52, 112–118. [Google Scholar] [CrossRef]
- You, Y.; Her, J.-Y.; Shafel, T.; Kang, T.; Jun, S. Supercooling preservation on quality of beef steak. J. Food Eng. 2020, 274, 109840. [Google Scholar] [CrossRef]
- Mok, J.H.; Her, J.Y.; Kang, T.; Hoptowit, R.; Jun, S. Effects of pulsed electric field (PEF) and oscillating magnetic field (OMF) combination technology on the extension of supercooling for chicken breasts. J. Food Process Eng. 2017, 196, 27–35. [Google Scholar] [CrossRef]
- Liu, F.; Yang, N.; Zhang, L.; Jin, Y.; Jin, Z.; Xu, X. Effect of weak magnetic field on the water-holding properties, texture, and volatile compounds of pork and beef during frozen storage. Food Biosci. 2023, 53, 102667. [Google Scholar] [CrossRef]
- PN-ISO 1442; Meat and Meat Products—Determination of Moisture Content (Reference Method). Polish Committee for Standardization: Warsaw, Poland, 2000.
- PN-A-04018:1975/Az3; Agricultural Food Products. Determination of Nitrogen by the Kjeldahl Method and Expressing as Protein. Polish Committee for Standardization: Warsaw, Poland, 2002.
- PN-ISO 1444; Meat and Meat Products—Determination of Free Fat Content. Polish Committee for Standardization: Warsaw, Poland, 2000.
- PN-A-82112:1973 Az 1; Meat and Meat Products—Determination of Chloride Content. Polish Committee for Standardization: Warsaw, Poland, 2002.
- PN-ISO 936; Meat and Meat Products—Determination of Total Ash. Polish Committee for Standardization: Warsaw, Poland, 2000.
- Duma-Kocan, P.; Rudy, M.; Gil, M.; Żurek, J.; Stanisławczyk, R.; Krajewska, A.; Dziki, D. The influence of High Hydrostatic Pressure on Selected Quality Features of Cold-Storage Pork Semimembranosus Muscle. Foods 2024, 13, 2089. [Google Scholar] [CrossRef] [PubMed]
- Znaniecki, P. Outline of Circulation, Assessment and Processing of Raw Materials of Animalorigin; PWRiL: Warsaw, Poland, 1983; pp. 226–227. (In Polish) [Google Scholar]
- Van Oeckel, M.J.; Warnants, N.; Boucqueé, C.V. Comparison of different methods for measuring water holding capacity and juiciness of pork versus online screening methods. Meat Sci. 1999, 51, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Pikul, J.; Leszczyński, D.E.; Kummerow, F.A. Evaluation of three modified TBA methods for measuring lipid oxidation in chicken meat. J. Agric. Food Chem. 1989, 37, 1309–1313. [Google Scholar] [CrossRef]
- PN-EN ISO 4833; Food and Feed Microbiology—Horizontal Method for the Determination of Microbial Counts. Plate Method at 30 Degrees C. Polish Committee for Standardization: Warsaw, Poland, 2004.
- Pérez-López, A.J.; Noguera-Artiaga, L.; López-Miranda González, S.; Gómez-San Miguel, P.; Ferrández, B.; Carbonell-Barrachina, A.A. Acrylamide content in French fries prepared with vegetable oils enriched with β-cyclodextrin or β-cyclodextrin-carvacrol complexes. LWT Food Sci. Technol. 2021, 148, 111765. [Google Scholar] [CrossRef]
- Cserhalmi, Z.S.; Sass-Kiss, A.; Toth-Markus, M.; Lechner, N. Study of pulsed electric field treated citrus juices. Innov. Food Sci. Emerg. Technol. 2006, 7, 49–54. [Google Scholar] [CrossRef]
- Jaico, T.; Prabhakar, H.; Adhikari, K.; Singh, K.; Mohan, A. Influence of Biocarbonates and Salt on the Physicochemical and Sensory Properties of Meatloaf. J. Food Qual. 2022, 2022, 4788425. [Google Scholar] [CrossRef]
- Baryłko-Pikielna, N.; Matuszewska, I. Sensory Testing of Food. Basics-Methods-Application; Polish Society of Food Technologists: Wrocław, Poland, 2009. (In Polish) [Google Scholar]
- Duma-Kocan, P.; Rudy, M.; Gil, M.; Stanisławczyk, R.; Żurek, J.; Zaguła, G. The Impact of a Pulsed Light Stream on the Quality and Durability of the Cold-Stored Longissimus Dorsal Muscle of Pigs. Int. J. Environ. Res. Public Health 2023, 20, 4063. [Google Scholar] [CrossRef]
- Lin, H.; Zhao, S.; Han, X.; Guan, W.; Liu, B.; Chen, A.; Sun, Y.; Wang, J. Effect of static magnetic field extended supercooling preservation on beef quality. Food Chem. 2022, 370, 131264. [Google Scholar] [CrossRef] [PubMed]
- Sujiwo, J.; Kim, H.J.; Song, S.O.; Jang, A. Relationship between quality and freshness traits and torrymeter value of beef loin during cold storage. Meat Sci. 2019, 149, 120–125. [Google Scholar] [CrossRef]
- Barbera, S. WHCtrend, an up-to-date method to measure water holding capacity in meat. Meat Sci. 2019, 52, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Jin, Y.; Zhang, X.; Yang, N.; Xu, X. Effect of Static Magnetic Field on the Quality of Pork during Super-Chilling Storage. Foods 2024, 13, 1205. [Google Scholar] [CrossRef]
- Hwang, H.J.; Park, B.W.; Chung, M.S. Comparison of microbial reduction effect of intense pulsed light according to growth stage and population density of Escherichia coli ATCC 25922 using a double Weibull model. Food Res. Int. 2023, 164, 112353. [Google Scholar] [CrossRef]
- Albert, T.; Braun, P.G.; Saffaf, J.; Wiacek, C. Physical methods for the decontamination of meat. Surf. Curr. Clin. Microbiol. Rep. 2021, 8, 9–20. [Google Scholar] [CrossRef]
- Wekhof, A.; Trompeter, F.J.; Franken, O. Pulsed UV disintegration (PUVD): A new sterilisation mechanism for packaging and broad medical-hospital applications. In Proceedings of the First International Conference on Ultraviolet Technologies, Washington, DC, USA, 14–16 June 2001. [Google Scholar]
- Fojt, L.; Strasák, L.; Vetterl, V.; Šmarda, J. Comparison of the low-frequency magnetic field effects on bacteria Escherichia coli, Leclercia adecarboxylata and Staphylococcus aureus. Bioelectrochemistry 2004, 63, 337–341. [Google Scholar] [CrossRef]
- Novák, J.; Strasák, L.; Fojt, L.; Slaninová, I.; Vetterl, V. Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae. Bioelectrochemistry 2007, 70, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Konopacki, M.; Rakoczy, R. The analysis of rotating magnetic field as a trigger of Gram-positive and Gram-negative bacteria growth. Biochem. Eng. J. 2019, 141, 259–267. [Google Scholar] [CrossRef]
- Hierro, E.; Ganan, M.; Barroso, B.; Fernandes, M. Pulsed light treatment for the inactivation of selected pathogens and the shelf-life extension of beef and tuna Carpaccio. Int. J. Food Microbiol. 2012, 158, 42–48. [Google Scholar] [CrossRef]
- Lins, P.G.; Silva, A.A.; Pugine, S.; Melo, M. Effect of exposure to pulsed magnetic field on microbiological quality, color and oxidative stability of fresh ground beef. J. Food Process Eng. 2017, 40, 12405. [Google Scholar] [CrossRef]
- Guo, Z.; Ge, X.; Yang, L.; Ma, G.; Ma, J.; Yu, Q.L.; Han, L. Ultrasound-assisted thawing of frozen white yak meat: Effects on thawing rate, meat quality, nutrients, and microstructure. Ultrason. Sonochem. 2021, 70, 105345. [Google Scholar] [CrossRef] [PubMed]
- Chmiel, M.; Słowiński, M.; Dasiewicz, K. Lightness of the color measured by computer image analysis as a factor for assessing the quality of pork meat. Meat Sci. 2011, 88, 566–570. [Google Scholar] [CrossRef]
- Magdelaine, P.; Spiess, M.P.; Valceschini, E. Poultry meat consumption trends in Europe. World’s Poult. Sci. J. 2008, 64, 53–63. [Google Scholar] [CrossRef]
- Węglarz, A. Meat quality defined based on pH and colour depending on cattle category and slaughter season. Czech J. Anim. Sci. 2010, 55, 548–556. [Google Scholar] [CrossRef]
- Beriain, M.J.; Goni, M.V.; Indurain, G.; Sarries, M.V.; Insausti, K. Predicting Longissimus dorsi myoglobin oxidation in aged beef based on early post-mortem colour measurements on the carcass as a colour stability index. Meat Sci. 2009, 81, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, G.; Lundstöm, K.; Tronberg, E. Contribution of pigment content, myoglobin forms and internal reflectance to the colour of pork loin and ham from pure breed pigs. Meat Sci. 2001, 59, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Latoch, A. Effect of meat marinating in kefir, yoghurt and buttermilk on the texture and color of pork steaks cooked sous-vide. Ann. Agric. Sci. 2020, 65, 129–136. [Google Scholar] [CrossRef]
- Hu, R.; Zhang, M.; Mujumdar, A.S. Novel assistive technologies for efficient freezing of pork based on high voltage electric field and static magnetic field: A comparative study. Innov. Food Sci. Emerg. Technol. 2022, 80, 103087. [Google Scholar] [CrossRef]
- Karamucki, T.; Gardzielewska, J.; Jakubowska, M.; Rybak, K.; Garczewska, J. The relationship between colour and pH in cold-stored quail breast muscle. Ann. Anim. Sci. 2013, 13, 401–413. [Google Scholar] [CrossRef]
- Karamucki, T.; Jakubowska, M.; Rybarczyk, A.; Gardzielewska, J. The influence of myoglobin on the colour of minced pork loin. Meat Sci. 2013, 94, 234–238. [Google Scholar] [CrossRef]
- Lindahl, G.; Karlsson, A.H.; Lundstöm, K.; Andersen, H.J. Significance of storage time on degree of blooming and colour stability of pork loin from different crossbreeds. Meat Sci. 2006, 72, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Luo, K.; Fu, R.; Lin, X.; Feng, A. Impact of the magnetic field-assisted freezing on the moisture content, water migration degree, microstructure, fractal dimension, and the quality of the frozen tilapia. Food Sci. Nutr. 2022, 10, 122–132. [Google Scholar] [CrossRef]
- Bedane, T.F.; Altin, O.; Erol, B.; Marra, F.; Erdogdu, F. Thawing of frozen food products in a staggered through-field electrode radio frequency system: A case study for frozen chicken breast meat with effects on drip loss and texture. Innov. Food Sci. Emerg. Technol. 2018, 50, 139–147. [Google Scholar] [CrossRef]
- Tomasevic, I. The effect of intense light pulses on the sensory quality and instrumental color of meat from different animal breeds. Biotechnol. Anim. Husb. 2015, 31, 273–281. [Google Scholar] [CrossRef]
- Ganan, M.; Hierro, E.; Hospital, X.F.; Barroso, E.; Fernández, M. Use of pulsed light to increase the safety of ready-to-eat cured meat products. Food Control 2013, 32, 512–517. [Google Scholar] [CrossRef]
- Ozer, N.P.; Demerci, A. Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV-light treatment. Int. J. Food Sci. Technol. 2006, 41, 354–360. [Google Scholar] [CrossRef]
- Tomasevic, I.; Rajkovic, A. The sensory quality of meat, game, poultry, seafood and meat products as affected by intense light pulses. A systematic review. Procedia Food Sci. 2015, 5, 285–288. [Google Scholar] [CrossRef]
Specification | Treatments | Cold Storage Period (Days) | Standard Error of the Mean | ||
---|---|---|---|---|---|
1 | 7 | 10 | |||
Fat (%) | K | 4.76 | 4.65 | 4.24 | 0.02 |
MS | 4.13 | 4.83 | 4.38 | 0.37 | |
SEM | 0.29 | 0.46 | 0.53 | ||
Water (%) | K | 74.23 | 73.23 | 72.19 | 3.13 |
MS | 74.06 | 73.43 | 72.65 | 4.29 | |
SEM | 2.26 | 5.38 | 3.48 | ||
Protein (%) | K | 20.11 | 20.53 | 20.45 | 1.03 |
MS | 20.36 | 20.26 | 20.46 | 1.34 | |
SEM | 0.62 | 1.09 | 1.85 | ||
Minerals (%) | K | 1.79 | 1.93 | 1.63 | 0.28 |
MS | 1.83 | 1.72 | 1.55 | 0.29 | |
SEM | 0.38 | 0.35 | 0.13 | ||
Salts (%) | K | 0.53 | 0.43 | 0.35 | 0.05 |
MS | 0.51 | 0.41 | 0.36 | 0.05 | |
SEM | 0.05 | 0.06 | 0.05 |
Specification | Treatments | Cold Storage Period (Days) | Standard Error of the Mean | ANOVA (Two Factor: T and Z) | ||
---|---|---|---|---|---|---|
1 | 7 | 10 | ||||
pH | K | 5.47 a | 5.55 a | 5.56 a | 0.08 | Z * |
MS | 5.71 b | 5.72 b | 5.77 b | 0.1 | ||
SEM | 0.09 | 0.11 | 0.08 | |||
Water activity | K | 0.974 | 0.976 | 0.979 | 0.01 | - |
MS | 0.970 | 0.978 | 0.971 | 0.01 | ||
SEM | 0.01 | 0.01 | 0.02 | |||
Thermal drip (%) | K | 24.81 | 24.62 | 21.97 | 2.34 | - |
MS | 26.09 | 22.94 | 21.31 | 4.25 | ||
SEM | 5.66 | 2.13 | 2.10 | |||
Forced drip (cm2) | K | 5.41 ax | 4.93 ay | 4.13 az | 1.12 | Z *; T * |
MS | 3.76 bx | 3.30 by | 3.02 bz | 0.89 | ||
SEM | 0.87 | 1.11 | 1.05 | |||
TBARS index (mg MDA/kg) | K | 0.60 | 0.63 | 0.68 | 0.05 | - |
MS | 0.60 | 0.68 | 0.75 | 0.22 | ||
SEM | 0.06 | 0.16 | 0.19 | |||
Oxidation-reduction potential (mV) | K | 323.19 | 301.17 | 320.21 | 20.09 | - |
MS | 298.90 | 319.04 | 345.14 | 12.18 | ||
SEM | 12.67 | 23.06 | 12.68 | |||
Total number of microorganisms (CFU/g) | K | 3.24 × 105 ax | 11.87 × 105 ay | 10.68 × 106 ay | 5.49 × 105 | Z *; T * |
MS | 2.35 × 104 bx | 4.06 × 105 by | 7.73 × 106 bz | 4.33 × 105 | ||
SEM | 0.92 × 104 | 1.35 × 105 | 1.33 × 106 |
Specification | Treatments | Cold Storage Period (Days) | Standard Error of the Mean | ANOVA (Two Factor: T and Z) | ||
---|---|---|---|---|---|---|
1 | 7 | 10 | ||||
L* | K | 50.95 a | 50.27 a | 49.85 a | 4.79 | Z * |
MS | 74.61 b | 75.06 b | 71.36 b | 6.39 | ||
SEM | 4.27 | 7.15 | 5.36 | |||
a* | K | 15.50 | 19.82 | 15.17 | 2.95 | - |
MS | 13.52 | 13.42 | 12.62 | 2.31 | ||
SEM | 2.65 | 3.22 | 2.02 | |||
b* | K | 6.89 | 12.89 | 8.70 | 1.38 | - |
MS | 11.04 | 12.95 | 11.04 | 1.76 | ||
SEM | 1.14 | 2.57 | 1.01 | |||
BI | K | 37.80 | 57.13 | 40.45 | 3.05 | - |
MS | 28.78 | 31.55 | 29.27 | 3.14 | ||
SEM | 3.02 | 3.57 | 3.24 | |||
∆E | 24.10 | 25.60 | 21.79 | |||
MB (%) | K | 47.88 | 54.77 | 47.83 | 8.87 | - |
MS | 49.07 | 42.83 | 48.12 | 9.19 | ||
SEM | 5.60 | 13.74 | 7.76 | |||
METMB (%) | K | 29.76 | 23.14 | 32.38 | 10.20 | - |
MS | 28.63 | 25.69 | 32.35 | 11.87 | ||
SEM | 9.05 | 13.25 | 10.83 | |||
MBO (%) | K | 22.36 | 22.09 | 19.79 | 7.75 | - |
MS | 22.30 | 31.47 | 19.53 | 12.06 | ||
SEM | 8.63 | 13.15 | 7.95 | |||
OZB (mg/kg) | K | 2.88 | 2.47 | 2.91 | 0.45 | - |
MS | 2.85 | 2.23 | 2.86 | 0.46 | ||
SEM | 0.21 | 0.87 | 0.24 |
Specification | Treatments | Cold Storage Period (Days) | Standard Error of the Mean | ANOVA (Two Factor: T and Z) | ||
---|---|---|---|---|---|---|
1 | 7 | 10 | ||||
Hardness 1 (N) | K | 111.47 xy | 135.93 xy | 124.05 axy | 7.70 | Z × T * |
MS | 125.55 xy | 139.23 x | 85.88 by | 8.45 | ||
SEM | 9.41 | 8.08 | 6.75 | |||
Hardness 2 (N) | K | 70.08 | 86.46 | 81.13 a | 6.36 | Z × T * |
MS | 76.31 | 87.53 x | 60.89 by | 6.94 | ||
SEM | 4.10 | 8.16 | 7.70 | |||
Rigidity 5 (N) | K | 14.73 | 20.40 | 9.39 a | 1.72 | Z * |
MS | 28.97 | 21.21 | 5.55 b | 2.10 | ||
SEM | 1.34 | 2.59 | 1.81 | |||
Rigidity 8 (N) | K | 66.31 | 82.01 | 63.95 a | 5.20 | Z * |
MS | 83.96 | 84.33 | 33.01 b | 4.47 | ||
SEM | 3.35 | 4.75 | 6.42 | |||
Adhesiveness (mJ) | K | 1.74 | 2.29 | 2.07 | 0.47 | - |
MS | 1.54 | 1.74 | 2.09 | 0.38 | ||
SEM | 0.23 | 0.29 | 0.76 | |||
Cohesiveness | K | 0.27 | 0.25 | 0.28 | 0.05 | - |
MS | 0.23 | 0.25 | 0.26 | 0.08 | ||
SEM | 0.06 | 0.04 | 0.10 | |||
Springiness (mm) | K | 3.39 | 3.41 | 4.10 | 0.88 | - |
MS | 2.82 | 3.97 | 4.02 | 0.91 | ||
SEM | 0.92 | 0.91 | 0.86 | |||
Resilience | K | 0.22 | 0.20 | 0.21 | 0.09 | - |
MS | 0.13 | 0.16 | 0.27 | 0.06 | ||
SEM | 0.08 | 0.09 | 0.07 | |||
Chewiness (mJ) | K | 100.99 ax | 106.96 ax | 146.58 ay | 10.0 | Z *; T * |
MS | 60.79 bx | 139.55 by | 94.63 bz | 11.33 | ||
SEM | 8.55 | 12.88 | 10.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duma-Kocan, P.; Rudy, M.; Gil, M.; Stanisławczyk, R.; Krajewska, A.; Dziki, D.; Saletnik, B. Synergistic Effects of a Rotating Magnetic Field and Pulsed Light on Key Quality Characteristics of Refrigerated Pork: A Novel Approach to Shaping Food Quality. Appl. Sci. 2024, 14, 12013. https://doi.org/10.3390/app142412013
Duma-Kocan P, Rudy M, Gil M, Stanisławczyk R, Krajewska A, Dziki D, Saletnik B. Synergistic Effects of a Rotating Magnetic Field and Pulsed Light on Key Quality Characteristics of Refrigerated Pork: A Novel Approach to Shaping Food Quality. Applied Sciences. 2024; 14(24):12013. https://doi.org/10.3390/app142412013
Chicago/Turabian StyleDuma-Kocan, Paulina, Mariusz Rudy, Marian Gil, Renata Stanisławczyk, Anna Krajewska, Dariusz Dziki, and Bogdan Saletnik. 2024. "Synergistic Effects of a Rotating Magnetic Field and Pulsed Light on Key Quality Characteristics of Refrigerated Pork: A Novel Approach to Shaping Food Quality" Applied Sciences 14, no. 24: 12013. https://doi.org/10.3390/app142412013
APA StyleDuma-Kocan, P., Rudy, M., Gil, M., Stanisławczyk, R., Krajewska, A., Dziki, D., & Saletnik, B. (2024). Synergistic Effects of a Rotating Magnetic Field and Pulsed Light on Key Quality Characteristics of Refrigerated Pork: A Novel Approach to Shaping Food Quality. Applied Sciences, 14(24), 12013. https://doi.org/10.3390/app142412013