Prediction of PM2.5 Concentration Based on Deep Learning for High-Dimensional Time Series
Abstract
:1. Introduction
- In this paper, LR-TCN is built upon the foundation of the TCN, and LR-TCN can predict future PM2.5 concentrations.
- Based on LR-TCN proposed in this paper, a combined prediction model is established by combining GRU and LR-TCN, and the outputs of the GRU prediction model and the LR-TCN prediction model are weighted and fused according to the inverse root mean square error ratio to realize the short-term prediction of PM2.5 concentration.
- Comparison experiments with other models reveal that the GRU-LR-TCN prediction model demonstrates better prediction performance and generalization ability, helping to improve air quality and protect public health.
2. Related Work
2.1. Combination Model
2.2. Modified TCN
- In this paper, the TCN is improved in more aspects. The activation function, residual structure, expansion rate, and feature-matching convolution position of the TCN are adjusted to make the LR-TCN model perform better.
- The proposed LR-TCN is combined with other models to enhance the generalization ability of the model.
- Adaptive weights are used, which can be adapted to different datasets.
- Better generalization capability makes the model robust.
- Model complexity is reduced and less training time is required.
3. Materials and Methods
3.1. TCN with LeakyRelu (L-TCN)
3.2. Improved TCN (LR-TCN)
3.3. Integrated Model (GRU-LR-TCN)
4. Experimental Results and Discussion
4.1. Data Description and Setup
- (1)
- For air quality data, there are missing values in the air quality data for some time periods at each monitoring station, and at the same moment, certain gas concentration data may also be missing. To prevent information leakage and minimize its impact on the experimental results, missing values in the air quality data are filled with the gas concentration data from the preceding time point. For time periods with missing data, the data from the preceding time step of that period are used for supplementation, resulting in a complete set of air quality data comprising 8760 time steps.
- (2)
- Because meteorological data are recorded every three hours and cannot correspond with the gas concentration data at each moment, the meteorological data for each moment are applied to the data for the following two hours. This is restructured to include 8760 time steps of meteorological data.
4.2. Multiple Linear Regression and Collinearity Analysis
4.3. Evaluation Metrics
4.4. Model Parameter Selection
Learning Rate | Epochs | Optimizer | Filter Size | Dilation Factor | Levels | Dropout | Loss Function | Batch Size | |
---|---|---|---|---|---|---|---|---|---|
LSTM [15] | 0.0001 | 100 | Adam | None | None | 2 | None | MSELoss | 128 |
GRU [16] | 0.0001 | 100 | Adam | None | None | 2 | None | MSELoss | 128 |
SRU [45] | 0.0001 | 100 | Adam | None | None | 2 | None | MSELoss | 128 |
TCN [23] | 0.0001 | 100 | Adam | 2 | [1,2,4,8] | 4 | 0.2 | MSELoss | 128 |
Gaussian-TCN [34] | 0.0001 | 100 | Adam | 2 | [1,2,4,8] | 4 | 0.2 | MSELoss | 128 |
GL-TCN [33] | 0.0001 | 100 | Adam | 2 | [1,2,4,8] | 4 | 0.2 | MSELoss | 128 |
DD-TCN [32] | 0.0001 | 100 | Adam | 2 | [1,2,4,8] | 4 | 0.2 | MSELoss | 128 |
D-TCN [46] | 0.0001 | 100 | Adam | 2 | [1,2,4,8] | 4 | 0.2 | MSELoss | 128 |
ST-TCN [44] | 0.0001 | 100 | Adam | 4 | [1,2,4,8] | 4 | 0.2 | MSELoss | 128 |
DMSnet [47] | 0.0001 | 100 | Adam | 4 | [1,2,4,8,16] | 5 | 0.2 | MSELoss | 128 |
LR-TCN | 0.0001 | 100 | Adam | 2 | [1,2,2,2] | 2 | 0.2 | MSELoss | 128 |
4.5. Ablation Experiment
4.6. LR-TCN Comparison Experiment
4.7. Integrated Model Ablation Experiment
4.8. Generality Experiment
4.9. Estimating Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gan, T.; Liang, W.; Yang, H.; Liao, X. The effect of economic development on haze pollution (PM2.5) based on a spatial perspective: Urbanization as a mediating variable. J. Clean. Prod. 2020, 266, 121880. [Google Scholar] [CrossRef]
- Wang, C.; Tu, Y.; Yu, Z.; Lu, R. PM2.5 and cardiovascular diseases in the elderly: An overview. Int. J. Environ. Res. Public Health 2015, 12, 8187–8197. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Bao, S.; Liu, X.; Wang, F.; Zhang, J.; Dang, P.; Huang, W.; Li, B.; Lin, Y. Low-dose exposure to black carbon significantly increase lung injury of cadmium by promoting cellular apoptosis. Ecotoxicol. Environ. Saf. 2021, 224, 112703. [Google Scholar] [CrossRef] [PubMed]
- Kranc, H.; Novack, V.; Shtein, A.; Sonkin, R.; Jaffe, E.; Novack, L. Ambient air pollution and out-of-hospital cardiac arrest. Israel nation wide assessment. Atmos. Environ. 2021, 261, 118567. [Google Scholar] [CrossRef]
- Hao, Y.; Peng, H.; Temulun, T.; Liu, L.Q.; Mao, J.; Lu, Z.N.; Chen, H. How harmful is air pollution to economic development? New evidence from PM2.5 concentrations of Chinese cities. J. Clean. Prod. 2018, 172, 743–757. [Google Scholar] [CrossRef]
- AirVisual, IQAir. 2018. Available online: https://www.airvisual.com/worldmost-polluted-cities/world-air-quality-report-2018-en.pdf (accessed on 3 April 2021).
- Zhang, L.; Lin, J.; Qiu, R.; Hu, X.; Zhang, H.; Chen, Q.; Tan, H.; Lin, D.; Wang, J. Trend analysis and forecast of PM2.5 in Fuzhou, China using the ARIMA model. Ecol. Indic. 2018, 95, 702–710. [Google Scholar] [CrossRef]
- Yan, X.; Enhua, X. ARIMA and Multiple Regression Additive Models for PM2.5 Based on Linear Interpolation. In Proceedings of the 2020 International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), Bangkok, Thailand, 30 October–1 November 2020; pp. 266–269. [Google Scholar] [CrossRef]
- Vong, C.M.; Ip, W.F.; Wong, P.K.; Yang, J.Y. Short-term prediction of air pollution in Macau using support vector machines. J. Control. Sci. Eng. 2012, 2012, 518032. [Google Scholar] [CrossRef]
- Yang, W.; Deng, M.; Xu, F.; Wang, H. Prediction of hourly PM2.5 using a space-time support vector regression model. Atmos. Environ. 2018, 181, 12–19. [Google Scholar] [CrossRef]
- Laña, I.; Del Ser, J.; Padró, A.; Vélez, M.; Casanova-Mateo, C. The role of local urban traffic and meteorological conditions in air pollution: A data-based case study in Madrid, Spain. Atmos. Environ. 2016, 145, 424–438. [Google Scholar] [CrossRef]
- Collado, J.; Pinzon, C. Air Pollution Prediction Using Machine Learning Algorithms: A Literature Review. In Proceedings of the 2022 V Congreso Internacional en Inteligencia Ambiental, Ingeniería de Software y Salud Electrónica y Móvil (AmITIC), San Jose, Costa Rica, 14–16 September 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Singh, K.P.; Gupta, S.; Kumar, A.; Shukla, S.P. Linear and nonlinear modeling approaches for urban air quality prediction. Sci. Total Environ. 2012, 426, 244–255. [Google Scholar] [CrossRef]
- Samal, K.K.R.; Babu, K.S.; Das, S.K. Multi-directional temporal convolutional artificial neural network for PM2.5 forecasting with missing values: A deep learning approach. Urban Clim. 2021, 36, 100800. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Dey, R.; Salem, F.M. Gate-variants of gated recurrent unit (GRU) neural networks. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 1597–1600. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, H.; Xu, X.; Han, M.; Zuo, P. A balanced social LSTM for PM2.5 concentration prediction based on local spatiotemporal correlation. Chemosphere 2022, 291, 133124. [Google Scholar] [CrossRef] [PubMed]
- Bhimavarapu, U.; Sreedevi, M. An enhanced loss function in deep learning model to predict PM2.5 in India. Intell. Decis. Technol. 2023, 17, 363–376. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, Y.; Yong, R.; Zou, G.; Yang, R.; Pan, J.; Li, M. A spatial correlation prediction model of urban PM2.5 concentration based on deconvolution and LSTM. Neurocomputing 2023, 544, 126280. [Google Scholar] [CrossRef]
- Yang, G.; Lee, H.; Lee, G. A hybrid deep learning model to forecast particulate matter concentration levels in Seoul, South Korea. Atmosphere 2020, 11, 348. [Google Scholar] [CrossRef]
- Ding, W.; Zhu, Y. Prediction of PM2.5 concentration in NingxiaHui autonomous region based on PCA-Attention-LSTM. Atmosphere 2022, 13, 1444. [Google Scholar] [CrossRef]
- Wang, B.; Kong, W.; Zhao, P. An air quality forecasting model based on improved convnet and RNN. Soft Comput. 2022, 25, 9209–9218. [Google Scholar] [CrossRef]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar] [CrossRef]
- Zhu, R.; Liao, W.; Wang, Y. Short-term prediction for wind power based on temporal convolutional network. Energy Rep. 2020, 6, 424–429. [Google Scholar] [CrossRef]
- Shi, T.; Li, P.; Yang, W.; Qi, A.; Qiao, J. Application of TCN-biGRU neural network in PM2.5 concentration prediction. Environ. Sci. Pollut. Res. 2023, 30, 119506–119517. [Google Scholar] [CrossRef] [PubMed]
- Samal, K.K.R.; Babu, K.S.; Das, S.K. A neural network approach with iterative strategy for long-term PM2.5 forecasting. In Proceedings of the 2021 IEEE 18th India Council International Conference (INDICON), Guwahati, India, 19–21 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Chen, J. Short-Term Prediction of PM2.5 Concentration based on Self-Attention Mechanism Improved Temporal Convolution Network. In Proceedings of the 2023 International Seminar on Computer Science and Engineering Technology (SCSET), New York, NY, USA, 29–30 April 2023; pp. 528–534. [Google Scholar] [CrossRef]
- Liu, H.; Deng, D.H. An enhanced hybrid ensemble deep learning approach for forecasting daily PM2.5. J. Cent. South Univ. 2022, 29, 2074–2083. [Google Scholar] [CrossRef]
- Yuan, P.; Mei, Y.; Zhong, Y.; Xia, Y.; Fang, L. A Hybrid Deep Learning Model for Predicting PM2.5. In Proceedings of the 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 15–17 April 2022; pp. 274–278. [Google Scholar] [CrossRef]
- Zhang, H.; Zhan, Y.; Li, J.; Chao, C.Y.; Liu, Q.; Wang, C.; Jia, S.; Ma, L.; Biswas, P. Using Kriging incorporated with wind direction to investigate ground-level PM2.5 concentration. Sci. Total Environ. 2021, 751, 141813. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Yang, W.; Qi, A.; Li, P.; Qiao, J. LASSO and attention-TCN: A concurrent method for indoor particulate matter prediction. Appl. Intell. 2023, 53, 20076–20090. [Google Scholar] [CrossRef]
- Zeng, L.; Xu, Y.; Ni, S.; Xu, M.; Jia, P. A mixed gas concentration regression prediction method for electronic nose based on two-channel TCN. Sens. Actuators B Chem. 2023, 382, 133528. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Q.; Ni, S.; Xu, Y.; Xu, M.; Jia, P. An electronic nose for CO concentration prediction based on GL-TCN. Sens. Actuators B Chem. 2023, 387, 133821. [Google Scholar] [CrossRef]
- Ni, S.; Jia, P.; Xu, Y.; Zeng, L.; Li, X.; Xu, M. Prediction of CO concentration in different conditions based on Gaussian-TCN. Sens. Actuators B Chem. 2023, 376, 133010. [Google Scholar] [CrossRef]
- Lei, F.; Zhang, X.; Yang, Y. PM2.5 concentration prediction based on temporal convolutional network. In Proceedings of the International Conference on Cloud Computing, Performance Computing, and Deep Learning (CCPCDL 2022), Wuhan, China, 11–13 March 2022; pp. 472–479. [Google Scholar] [CrossRef]
- Xu, J.; Li, Z.; Du, B.; Zhang, M.; Liu, J. Reluplex made more practical: Leaky ReLU. In Proceedings of the 2020 IEEE Symposium on Computers and communications (ISCC), Rennes, France, 7–10 July 2020; pp. 1–7. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part IV 14. pp. 630–645. [Google Scholar]
- Zuo, K. Integrated Forecasting Models Based on LSTM and TCN for Short-Term Electricity Load Forecasting. In Proceedings of the 2023 9th International Conference on Electrical Engineering, Control and Robotics (EECR), Wuhan, China, 24–26 February 2023; pp. 207–211. [Google Scholar] [CrossRef]
- Zheng, Y.; Capra, L.; Wolfson, O.; Yang, H. Urban computing: Concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol. (TIST) 2014, 5, 1–55. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, F.; Hsieh, H.P. U-air: When urban air quality inference meets big data. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; pp. 1436–1444. [Google Scholar] [CrossRef]
- Zheng, Y.; Yi, X.; Li, M.; Li, R.; Shan, Z.; Chang, E.; Li, T. Forecasting fine-grained air quality based on big data. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 10–13 August 2015; pp. 2267–2276. [Google Scholar] [CrossRef]
- Zheng, Q.; Tian, X.; Yu, Z.; Jin, B.; Jiang, N.; Ding, Y.; Yang, M.; Elhanashi, A.; Saponara, S.; Kpalma, K. Application of complete ensemble empirical mode decomposition based multi-stream informer (CEEMD-MsI) in PM2.5 concentration long-term prediction. Expert Syst. Appl. 2024, 245, 123008. [Google Scholar] [CrossRef]
- Shao, M.; Xu, X.; Lu, Y.; Dai, Q. Spatio-temporally differentiated impacts of temperature inversion on surface PM2.5 in eastern China. Sci. Total Environ. 2023, 855, 158785. [Google Scholar] [CrossRef]
- Zhang, L.; Na, J.; Zhu, J.; Shi, Z.; Zou, C.; Yang, L. Spatiotemporal causal convolutional network for forecasting hourly PM2.5 concentrations in Beijing, China. Comput. Geosci. 2021, 155, 104869. [Google Scholar] [CrossRef]
- Lei, T.; Zhang, Y.; Wang, S.I.; Dai, H.; Artzi, Y. Simple recurrent units for highly parallelizable recurrence. arXiv 2017, arXiv:1709.02755. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, L.; Yao, R.; Wu, C. Dual attention-based temporal convolutional network for fault prognosis under time-varying operating conditions. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, S.; Yang, J.; Yu, G.; Wang, Y. Dual memory scale network for multi-step time series forecasting in thermal environment of aquaculture facility: A case study of recirculating aquaculture water temperature. Expert Syst. Appl. 2022, 208, 118218. [Google Scholar] [CrossRef]
RMSE | MSE | MAE | SMAPE | NAE | R2 | IA | |
---|---|---|---|---|---|---|---|
Orginal TCN[1,2,4,8,Re] | 18.787 | 352.977 | 13.067 | 23.342 | 0.042 | 0.862 | 0.959 |
TCN[1,2,4,8,Re] | 18.773 | 352.442 | 12.887 | 22.753 | 0.041 | 0.862 | 0.962 |
TCN[1,2,4,8,Lr] | 17.686 | 312.809 | 11.401 | 20.356 | 0.036 | 0.878 | 0.966 |
TCN[Re] | 17.929 | 321.462 | 11.917 | 21.541 | 0.038 | 0.874 | 0.966 |
TCN[Lr] | 17.298 | 299.246 | 11.221 | 20.059 | 0.036 | 0.883 | 0.967 |
CNN-TCN[1,2,4,8,Re] | 16.433 | 270.064 | 10.680 | 19.542 | 0.034 | 0.894 | 0.970 |
CNN-TCN[1,2,4,8,Lr] | 16.529 | 273.223 | 10.695 | 19.596 | 0.034 | 0.893 | 0.970 |
CNN-TCN[Re] | 16.504 | 272.414 | 10.762 | 20.174 | 0.034 | 0.893 | 0.971 |
CNN-TCN[Lr] | 16.306 | 265.900 | 10.593 | 20.440 | 0.034 | 0.896 | 0.972 |
RMSE | MSE | MAE | SMAPE | NAE | R2 | IA | Time | |
---|---|---|---|---|---|---|---|---|
LSTM | 18.719 | 350.411 | 11.941 | 26.959 | 0.036 | 0.863 | 0.963 | 21.46 s |
GRU | 17.090 | 292.075 | 10.678 | 20.628 | 0.034 | 0.886 | 0.970 | 24.10 s |
SRU | 17.223 | 296.632 | 10.543 | 20.720 | 0.033 | 0.884 | 0.969 | 23.29 s |
TCN | 18.787 | 352.977 | 13.067 | 23.342 | 0.042 | 0.862 | 0.959 | 64.66 s |
Gaussian-TCN | 17.592 | 309.499 | 11.427 | 20.874 | 0.036 | 0.879 | 0.969 | 80.38 s |
GL-TCN | 17.349 | 300.988 | 11.361 | 21.106 | 0.036 | 0.882 | 0.968 | 67.69 s |
DD-TCN | 17.621 | 310.518 | 11.222 | 19.906 | 0.036 | 0.879 | 0.969 | 108.34 s |
D-TCN | 17.675 | 312.411 | 11.2111 | 19.921 | 0.036 | 0.878 | 0.968 | 80.01 s |
LR-TCN | 16.306 | 265.900 | 10.593 | 20.440 | 0.034 | 0.896 | 0.972 | 55.62 s |
RMSE | MSE | MAE | SMAPE | NAE | R2 | IA | Time | |
---|---|---|---|---|---|---|---|---|
LSTM-TCN | 17.951 | 322.265 | 11.771 | 21.864 | 0.037 | 0.874 | 0.964 | 97.09 s |
GRU-TCN | 16.862 | 284.340 | 10.561 | 19.192 | 0.033 | 0.889 | 0.969 | 91.47 s |
SRU-TCN | 17.364 | 301.542 | 11.475 | 21.171 | 0.036 | 0.882 | 0.967 | 90.09 s |
LSTM-Gaussian-TCN | 18.019 | 324.693 | 11.723 | 21.881 | 0.037 | 0.873 | 0.967 | 116.38 s |
GRU-Gaussian-TCN | 16.954 | 287.445 | 10.620 | 20.046 | 0.034 | 0.888 | 0.970 | 117.46 s |
SRU-GaussianTCN | 17.144 | 293.943 | 10.869 | 20.533 | 0.034 | 0.885 | 0.970 | 104.47 s |
LSTM-GL-TCN | 17.855 | 318.835 | 11.477 | 21.693 | 0.036 | 0.875 | 0.966 | 95.38 s |
GRU-GL-TCN | 17.038 | 290.294 | 10.724 | 20.514 | 0.034 | 0.887 | 0.969 | 95.49 s |
SRU-GL-TCN | 16.848 | 283.867 | 10.626 | 19.737 | 0.034 | 0.889 | 0.970 | 92.94 s |
LSTM-DD-TCN | 17.351 | 301.066 | 10.921 | 20.597 | 0.035 | 0.882 | 0.969 | 143.65 s |
DDTCN-GRU | 17.040 | 290.375 | 10.704 | 20.480 | 0.034 | 0.886 | 0.970 | 144.91 s |
SRU-DD-TCN | 17.119 | 293.062 | 10.719 | 19.613 | 0.034 | 0.885 | 0.970 | 133.45 s |
LSTM-D-TCN | 17.754 | 315.232 | 11.495 | 21.512 | 0.036 | 0.877 | 0.967 | 112.55 s |
GRU-D-TCN | 17.333 | 300.458 | 10.822 | 20.069 | 0.034 | 0.883 | 0.969 | 112.46 s |
SRU-D-TCN | 17.063 | 291.179 | 10.573 | 19.508 | 0.034 | 0.886 | 0.970 | 100.72 s |
LSTM-LR-TCN | 17.001 | 289.021 | 10.816 | 20.184 | 0.034 | 0.887 | 0.970 | 84.68 s |
GRU-LR-TCN | 16.261 | 264.444 | 10.138 | 18.978 | 0.032 | 0.897 | 0.972 | 78.54 s |
SRU-LR-TCN | 16.369 | 267.969 | 10.348 | 19.476 | 0.033 | 0.897 | 0.895 | 80.01 s |
Station | Network | RMSE | MSE | MAE | SMAPE | NAE | R2 | IA | Time |
---|---|---|---|---|---|---|---|---|---|
LSTM | 17.100 | 292.438 | 11.141 | 29.090 | 0.049 | 0.874 | 0.966 | 25.19 s | |
GRU | 15.053 | 226.618 | 9.092 | 20.795 | 0.039 | 0.903 | 0.975 | 23.71 s | |
SRU | 15.236 | 232.158 | 9.184 | 21.066 | 0.041 | 0.900 | 0.974 | 24.49 s | |
TCN | 15.577 | 242.661 | 9.626 | 20.725 | 0.043 | 0.896 | 0.973 | 62.88 s | |
1002 | Gaussian-TCN | 15.370 | 236.251 | 9.149 | 20.088 | 0.039 | 0.898 | 0.973 | 90.53 s |
GL-TCN | 16.172 | 261.561 | 9.955 | 20.791 | 0.042 | 0.888 | 0.972 | 68.26 s | |
DD-TCN | 15.752 | 248.132 | 9.488 | 20.085 | 0.042 | 0.893 | 0.973 | 119.98 s | |
D-TCN | 16.111 | 259.579 | 10.736 | 23.352 | 0.047 | 0.888 | 0.970 | 84.22 s | |
ST-TCN | 18.352 | 341.812 | 12.281 | 35.152 | 0.285 | 0.668 | 0.913 | 67.38 s | |
DMSnet | 16.622 | 280.291 | 11.371 | 28.682 | 0.210 | 0.824 | 0.957 | 17391 s | |
LR-TCN | 15.454 | 238.839 | 9.637 | 20.862 | 0.042 | 0.897 | 0.974 | 59.99 s | |
GRU-LR-TCN | 14.837 | 220.158 | 9.024 | 19.813 | 0.039 | 0.905 | 0.975 | 86.24 s | |
LSTM | 19.620 | 384.953 | 11.154 | 20.505 | 0.037 | 0.842 | 0.957 | 21.64 s | |
GRU | 18.934 | 358.513 | 10.625 | 17.873 | 0.035 | 0.853 | 0.961 | 22.77 s | |
SRU | 18.919 | 357.954 | 10.601 | 18.075 | 0.035 | 0.853 | 0.961 | 19.83 s | |
TCN | 18.822 | 354.279 | 10.820 | 17.985 | 0.036 | 0.855 | 0.959 | 70.24 s | |
1003 | Gaussian-TCN | 19.096 | 364.671 | 10.901 | 17.524 | 0.036 | 0.850 | 0.961 | 81.81 s |
GL-TCN | 18.834 | 354.727 | 10.503 | 17.250 | 0.035 | 0.855 | 0.962 | 68.13 s | |
DD-TCN | 18.857 | 355.611 | 10.609 | 16.955 | 0.035 | 0.854 | 0.961 | 119.54 s | |
D-TCN | 19.049 | 362.886 | 11.132 | 17.706 | 0.037 | 0.851 | 0.960 | 77.66 s | |
ST-TCN | 19.643 | 390.855 | 18.281 | 20.117 | 0.233 | 0.721 | 0.902 | 65.41 s | |
DMSnet | 18.845 | 360.126 | 13.345 | 19.091 | 0.190 | 0.736 | 0.932 | 16974 s | |
LR-TCN | 18.695 | 349.530 | 10.556 | 16.162 | 0.035 | 0.857 | 0.962 | 57.34 s | |
GRU-LR-TCN | 18.746 | 351.422 | 10.530 | 16.417 | 0.035 | 0.856 | 0.962 | 85.42 s | |
LSTM | 18.692 | 349.421 | 11.534 | 34.034 | 0.042 | 0.867 | 0.965 | 22.04 s | |
GRU | 17.832 | 317.985 | 10.132 | 19.563 | 0.039 | 0.879 | 0.968 | 24.32 s | |
SRU | 17.830 | 317.910 | 10.531 | 19.585 | 0.041 | 0.879 | 0.968 | 21.09 s | |
TCN | 18.586 | 345.452 | 11.003 | 20.384 | 0.035 | 0.869 | 0.964 | 63.52 s | |
1023 | Gaussian-TCN | 18.607 | 346.228 | 11.003 | 23.537 | 0.037 | 0.868 | 0.966 | 88.23 s |
GL-TCN | 18.317 | 335.532 | 11.343 | 19.693 | 0.043 | 0.872 | 0.967 | 69.91 s | |
DD-TCN | 18.067 | 326.416 | 10.741 | 20.532 | 0.041 | 0.876 | 0.968 | 119.86 s | |
D-TCN | 18.130 | 328.718 | 10.910 | 20.068 | 0.041 | 0.875 | 0.967 | 88.71 s | |
ST-TCN | 19.628 | 411.201 | 15.056 | 29.230 | 0.306 | 0.665 | 0.885 | 63.72 s | |
DMSnet | 18.662 | 358.742 | 12.469 | 26.936 | 0.194 | 0.801 | 0.943 | 16810 s | |
LR-TCN | 18.200 | 331.270 | 10.980 | 18.917 | 0.040 | 0.874 | 0.968 | 54.65 s | |
GRU-LR-TCN | 17.878 | 319.646 | 10.630 | 21.768 | 0.041 | 0.878 | 0.969 | 83.10 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Jia, Y.; Jia, Z.-H.; He, C.-B.; Shi, F.; Huang, X.-H. Prediction of PM2.5 Concentration Based on Deep Learning for High-Dimensional Time Series. Appl. Sci. 2024, 14, 8745. https://doi.org/10.3390/app14198745
Hu J, Jia Y, Jia Z-H, He C-B, Shi F, Huang X-H. Prediction of PM2.5 Concentration Based on Deep Learning for High-Dimensional Time Series. Applied Sciences. 2024; 14(19):8745. https://doi.org/10.3390/app14198745
Chicago/Turabian StyleHu, Jie, Yuan Jia, Zhen-Hong Jia, Cong-Bing He, Fei Shi, and Xiao-Hui Huang. 2024. "Prediction of PM2.5 Concentration Based on Deep Learning for High-Dimensional Time Series" Applied Sciences 14, no. 19: 8745. https://doi.org/10.3390/app14198745
APA StyleHu, J., Jia, Y., Jia, Z.-H., He, C.-B., Shi, F., & Huang, X.-H. (2024). Prediction of PM2.5 Concentration Based on Deep Learning for High-Dimensional Time Series. Applied Sciences, 14(19), 8745. https://doi.org/10.3390/app14198745