Piezoelectric-Based Sensor Concept and Design with Machine Learning-Enabled Using COMSOL Multiphysics
Abstract
:1. Introduction
2. Design and Methodology
2.1. Structure Design
2.2. Mesh and Study Validation
2.3. Methodology
3. Results and Discussion
4. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Q.; Ruan, T.; Xu, Q.; Yang, B.; Liu, J. Wearable multifunctional piezoelectric MEMS device for motion monitoring, health warning, and earphone. Nano Energy 2021, 89, 106324. [Google Scholar] [CrossRef]
- An, Y.K.; Kim, M.; Sohn, H. Piezoelectric transducers for assessing and monitoring civil infrastructures. In Sensor Technologies for Civil Infrastructures; Woodhead Publishing: Sawston, UK, 2014; pp. 86–120. [Google Scholar]
- Nolz, R.; Kammerer, G. Evaluating a sensor setup with respect to near-surface soil water monitoring and determination of in-situ water retention functions. J. Hydrol. 2017, 549, 301–312. [Google Scholar] [CrossRef]
- Fu, J.L.; Ayazi, F. Dual-mode piezo-on-silicon resonant temperature and humidity sensor for portable air quality monitoring systems. In Proceedings of the SENSORS, 2010 IEEE, Waikoloa, HI, USA, 1–4 November 2010; pp. 2131–2135. [Google Scholar]
- Khot, L.R.; Panigrahi, S.; Lin, D. Development and evaluation of piezoelectric-polymer thin film sensors for low concentration detection of volatile organic compounds related to food safety applications. Sens. Actuators B Chem. 2011, 153, 1–10. [Google Scholar] [CrossRef]
- Chen, N.; Bedekar, V. Design, Modeling, and Simulation of Two-Piece Trapezoidal Piezoelectric Devices for Sensing and Energy Harvesting. Adv. Mater. Sci. Eng. 2020, 2020, 9743431. [Google Scholar] [CrossRef]
- Bhaskaran, P.R.; Rathnam, J.D.; Koilmani, S.; Subramanian, K. Multiresonant frequency piezoelectric energy harvesters integrated with high sensitivity piezoelectric accelerometer for bridge health monitoring applications. Smart Mater. Res. 2017, 2017, 6084309. [Google Scholar] [CrossRef]
- Weaver, P.M.; Stevenson, T.; Quast, T.; Bartl, G.; Schmitz-Kempen, T.; Woolliams, P.; Blumfield, A.; Stewart, M.; Cain, M.G. High temperature measurement and characterization of piezoelectric properties. J. Mater. Sci. Mater. Electron. 2015, 26, 9268–9278. [Google Scholar] [CrossRef]
- Xie, L.; Wang, G.; Jiang, C.; Yu, F.; Zhao, X. Properties and Applications of Flexible Poly (Vinylidene Fluoride)-Based Piezoelectric Materials. Crystals 2021, 11, 644. [Google Scholar] [CrossRef]
- Rahman, W.; Garain, S.; Sultana, A.; Middya, T.R.; Mandal, D. Self-powered piezoelectric Nanogenerator based on wurtzite ZnO nanoparticles for energy harvesting application. Mater. Today Proc. 2018, 5, 9826–9830. [Google Scholar] [CrossRef]
- Popovici, D.; Constantinescu, F.; Maricaru, M.; Hantila, F.I.; Nitescu, M.; Gheorghe, A. Modeling and simulation of piezoelectric devices. In Modelling and Simulation; IntechOpen: London, UK, 2008. [Google Scholar]
- Jasim, A.; Wang, H.; Yesner, G.; Safari, A.; Maher, A. Optimized design of layered bridge transducer for piezoelectric energy harvesting from roadway. Energy 2017, 141, 1133–1145. [Google Scholar] [CrossRef]
- Du, C.; Liu, P.; Jin, C.; Yang, H.; Li, C.; Jiang, G.; Oeser, M. Evaluation of the piezoelectric and mechanical behaviors of asphalt pavements embedded with a piezoelectric energy harvester based on multiscale finite element simulations Construction and Building. Materials 2022, 333, 127438. [Google Scholar] [CrossRef]
- Mourched, B.; Abdallah, M. Design and characterization of a new microscopy probe using COMSOL and ANSYS. Int. J. Multiphysics 2022, 16, 95–106. [Google Scholar]
- Mourched, B.; Nativel, E.L.; Kribich, R.; Falgayrettes, P. GALL-BORRUT, P Study of light emission and collection in a transparent dielectric cantilever-based near-field optical probe. J. Microsc. 2016, 262, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Akshya, S.; Juliet, A.V. Study of toxic gas adsorption on silicon substrate integrated with piezoelectric material for sensing application using COMSOL Multiphysics. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1070, p. 012003. [Google Scholar]
- Dileena, L.; Sreeja, S.B.; Sreekala, C.O. A comparative study on piezoelectric and piezoresistive pressure sensor using COMSOL simulation. Mater. Today Proc. 2021, 46, 3121–3126. [Google Scholar] [CrossRef]
- Jain, A.; Kumar, S.; Kharb, A. COMSOL Multiphysics Simulation of Piezoelectric Sensor for Energy Harvesting from Railway tracks. Int. J. Recent Technol. Eng. 2019, 8, 5446–5452. [Google Scholar] [CrossRef]
- Veena, S.; Hegde, V.; Nagaraj, V.S.; Suresh, H.L.; Gautham, M.A. Design and Simulation of Mems based Piezoelectric Acoustic sensor. In Proceedings of the 2019 IEEE 4th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Chennai, India, 21–23 November 2019; pp. 1–4. [Google Scholar]
- Kumar, A.; Sharma, S.; Chand, K.; Guha, P. Structural Analysis of PFCB W14 Material Using COMSOL Multiphysics. In Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 7–8 March 2019; pp. 649–653. [Google Scholar]
- Sivakumar, N.; Kanagasabapathy, H.; Srikanth, H.P. Static multiple, distributed piezoelectric actuator structural deformation and bending analysis using comsol. Mater. Today Proc. 2018, 5, 11516–11525. [Google Scholar] [CrossRef]
- Bhargava, M.; Tamboli, A.; Sivanathan, K. Performance Enhancement of MEMS based Piezoelectric Pressure Sensor using Multistep Configuration. In Proceedings of the 2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO), Macao, China, 22–26 July 2019; pp. 576–579. [Google Scholar]
- Amiri, N.; Tasnim, F.; Anbarani, M.T.; Dagdeviren, C.; Karami, M.A. Experimentally verified finite element modeling and analysis of a conformable piezoelectric sensor. Smart Mater. Struct. 2021, 30, 085017. [Google Scholar] [CrossRef]
- Panahi, A.; Hassanzadeh, A.; Moulavi, A. Design of a low cost, double triangle, piezoelectric sensor for respiratory monitoring applications. Sens. Bio-Sens. Res. 2020, 30, 100378. [Google Scholar] [CrossRef]
- Malhotra, K.; Kumari, M.U.; Shireesha, G.; Karbari, S.R. Design and simulation of stacked PVDF layers with ZnO for piezoelectric nanodevices. Mater. Today Proc. 2021, 42, 951–954. [Google Scholar] [CrossRef]
- Turdakyn, N.; Medeubayev, A.; Abay, I.; Adair, D.; Kalimuldina, G. Preparation of a piezoelectric PVDF sensor via electrospinning. Mater. Today Proc. 2022, 49, 2478–2481. [Google Scholar] [CrossRef]
- Likhon, M.M.; Shawan, S.I.; Alam, M.N.; Siddique, S. Characterizing Piezoelectric Properties of PZT-4, PZT-5A, PZT-5J, PZT-7A and Lithium Tantalite Material-based Transducers. In Proceedings of the 2021 International Conference on Green Energy, Computing and Sustainable Technology (GECOST), Miri, Malaysia, 7–9 July 2021; pp. 1–4. [Google Scholar]
- Greeshma, M.G.; Sreenidhi, P.R. Material Design for Self-Powered Cranial Drill using Piezoelectric effect–A COMSOL Study. In Proceedings of the 2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE), NaviMumbai, India, 15–16 January 2021; pp. 1–5. [Google Scholar]
- Vrtagić, S.; Softić, E.; Gmanjunath, A.; Ponjavić, M.; Stević, Ž.; Subotić, M.; Kevrić, J. Traffic Flow Influence on the Bitumen Distortion through the Back Propagation Algorithm Based on the Real on Road Formed Dataset Parameters. In International Symposium on Innovative and Interdisciplinary Applications of Advanced Technologies; Springer: Cham, Switzerland, 2021; pp. 167–186. [Google Scholar]
- Younis, A.; Dong, Z.; ElBadawy, M.; AlAnazi, A.; Salem, H.; AlAwadhi, A. Design and Development of Bladeless Vibration-Based Piezoelectric Energy–Harvesting Wind Turbine. Appl. Sci. 2022, 12, 7769. [Google Scholar] [CrossRef]
- Hussain, G.; Ali Saleh Al-rimy, B.; Hussain, S.; Albarrak, A.M.; Qasem, S.N.; Ali, Z. Smart Piezoelectric-Based Wearable System for Calorie Intake Estimation Using Machine Learning. Appl. Sci. 2022, 12, 6135. [Google Scholar] [CrossRef]
- Yu, Y.; Qin, X.; Hussain, S.; Hou, W.; Weis, T. Pedestrian Counting Based on Piezoelectric Vibration Sensor. Appl. Sci. 2022, 12, 1920. [Google Scholar] [CrossRef]
- Lozoya-Santos, J.d.-J.; Félix-Herrán, L.C.; Tudón-Martínez, J.C.; Vargas-Martinez, A.; Ramirez-Mendoza, R.A. Design and Implementation of an IoT-Oriented Strain Smart Sensor with Exploratory Capabilities on Energy Harvesting and Magnetorheological Elastomer Transducers. Appl. Sci. 2020, 10, 4387. [Google Scholar] [CrossRef]
- Aramendia, I.; Fernandez-Gamiz, U.; Zulueta Guerrero, E.; Lopez-Guede, J.M.; Sancho, J. Power Control Optimization of an Underwater Piezoelectric Energy Harvester. Appl. Sci. 2018, 8, 389. [Google Scholar] [CrossRef]
- Mouapi, A.; Hakem, N.; Kandil, N. Piezoelectric Energy Harvesting Prediction and Efficient Management for Industrial Wireless Sensor. Appl. Sci. 2020, 10, 8486. [Google Scholar] [CrossRef]
- Yang, Z.-X.; He, X.-T.; Peng, D.-D.; Sun, J.-Y. Free Damping Vibration of Piezoelectric Cantilever Beams: A Biparametric Perturbation Solution and Its Experimental Verification. Appl. Sci. 2020, 10, 215. [Google Scholar] [CrossRef]
- Zhang, J.; Kong, L.; Zhang, L.; Li, F.; Zhou, W.; Ma, S.; Qin, L. A Novel Ropes-Driven Wideband Piezoelectric Vibration Energy Harvester. Appl. Sci. 2016, 6, 402. [Google Scholar] [CrossRef]
- Vrtagić, S.; Softić, E.; Ponjavić, M.; Stević, Ž.; Subotić, M.; Gmanjunath, A.; Kevric, J. Video Data Extraction and Processing for Investigation of Vehicles’ Impact on the Asphalt Deformation Through the Prism of Computational Algorithms. Trait. Du Signal 2020, 37, 899–906. [Google Scholar] [CrossRef]
- Martín Fernández, C.; Langendoerfer, P.; Soltani Zarrin, P.; Díaz-Rodríguez, M.; Rubio-Muñoz, B. Kafka-ML: Connecting the data stream with ML/AI frameworks. Future Gener. Comput. Syst. 2022, 126, 15–33. [Google Scholar] [CrossRef]
- Pervaiz, F.; Vashistha, A.; Anderson, R. Examining the challenges in development data pipeline. In Proceedings of the 2nd ACM SIGCAS Conference on Computing and Sustainable Societies, Accra, Ghana, 3–5 July 2019; pp. 13–21. [Google Scholar]
Study | Maximum Element Size (cm) | Minimum Element Size (cm) | Maximum Element of Growth Rate | Resolution of Narrow Regions | Thickness Adjustment Factor |
---|---|---|---|---|---|
1 | 8 | 5 | 5 | 2 | 1 |
2 | 5 | 2 | 3 | 2 | 1 |
3 | 5 | 2 | 2 | 2 | 1 |
4 | 5 | 2 | 1.4 | 2 | 1 |
5 | 3 | 1 | 1.4 | 2 | 1 |
6 | 2 | 0.1 | 1.4 | 0.7 | 1 |
7 | 2 | 0.1 | 1.4 | 0.7 | 2 |
m (kg) | 40 | 45 | 50 | 55 | 60 | |
---|---|---|---|---|---|---|
Voltage sensors (V) | L1 (average for all positions) | 0.950266 | 1.069049 | 1.187832 | 1.306615 | 1.425399 |
L2 (average for all positions) | 0.95015 | 1.068919 | 1.187688 | 1.306456 | 1.425225 | |
L3 (average for all positions) | 0.947674 | 1.066134 | 1.184593 | 1.303052 | 1.421512 | |
R1 (average for all positions) | 0.948394 | 1.066943 | 1.185492 | 1.304042 | 1.422591 | |
R2 (average for all positions) | 0.951305 | 1.070218 | 1.189131 | 1.308044 | 1.426957 | |
R3 (average for all positions) | 0.952008 | 1.071008 | 1.190009 | 1.30901 | 1.428011 |
Position (cm) | Output | Input | ||||||
---|---|---|---|---|---|---|---|---|
Voltage (V) | L1 | L2 | L3 | R1 | R2 | R3 | ||
5.0 | 0.50 m/s | m = 40 kg | 0.6439 | 6.8978 | 0.6409 | 0.0775 | 0.1221 | 0.0772 |
m = 45 kg | 0.7244 | 7.7600 | 0.7210 | 0.0871 | 0.1373 | 0.0869 | ||
0.75 m/s 1.00 m/s | m = 40 kg m = 45 kg | 0 | ||||||
7.5 | 0.75 m/s | m = 40 kg | 0.9648 | 5.5787 | 0.9634 | 0.1422 | 0.2145 | 0.1415 |
m = 45 kg | 1.0854 | 6.2760 | 1.0838 | 0.1599 | 0.2414 | 0.1592 | ||
0.50 m/s 1.00 m/s | m = 40 kg m = 45 kg | 0 | ||||||
10.0 | 0.50 m/s | m = 40 kg | 1.2414 | 4.2943 | 1.2420 | 0.2280 | 0.3348 | 0.2286 |
m = 45 kg | 1.3966 | 4.8311 | 1.3972 | 0.2565 | 0.3766 | 0.2572 | ||
0.75 m/s | m = 40 kg m = 45 kg | 0 | ||||||
1.00 m/s | m = 40 kg | 1.2414 | 4.2943 | 1.2420 | 0.2280 | 0.3348 | 0.2286 | |
m = 45 kg | 1.3966 | 4.8311 | 1.3972 | 0.2565 | 0.3766 | 0.2572 | ||
12.5 | 0.50 m/s 0.75 m/s 1.00 m/s | m = 40 kg m = 45 kg | 0 | |||||
15.0 | 0.50 m/s | m = 40 kg | 1.4975 | 3.0231 | 1.4857 | 0.4553 | 0.6416 | 0.4518 |
m = 45 kg | 1.6847 | 3.4009 | 1.6714 | 0.5122 | 0.7218 | 0.5083 | ||
0.75 m/s | m = 40 kg | 1.4975 | 3.0231 | 1.4857 | 0.4553 | 0.6416 | 0.4518 | |
m = 45 kg | 1.6847 | 3.4009 | 1.6714 | 0.5122 | 0.7218 | 0.5083 | ||
1.00 m/s | m = 40 kg m = 45 kg | 0 | ||||||
17.5 | 0.50 m/s 0.75 m/s 1.00 m/s | m = 40 kg m = 45 kg | 0 | |||||
20.0 | 0.50 m/s | m = 40 kg | 1.4479 | 2.3179 | 1.4401 | 0.7210 | 1.0141 | 0.7239 |
m = 45 kg | 1.6289 | 2.6077 | 1.6201 | 0.8111 | 1.1408 | 0.8144 | ||
0.75 m/s | m = 40 kg m = 45 kg | 0 | ||||||
1.00 m/s | m = 40 kg | 1.4479 | 2.3179 | 1.4401 | 0.7210 | 1.0141 | 0.7239 | |
m = 45 kg | 1.6289 | 2.6077 | 1.6201 | 0.8111 | 1.1408 | 0.8144 | ||
22.5 | 0.75 m/s | m = 40 kg | 1.3520 | 0.0000 | 1.3374 | 0.8657 | 1.2202 | 0.8686 |
m = 45 kg | 1.5209 | 0.0000 | 1.5045 | 0.9739 | 1.3727 | 0.9772 | ||
0.50 m/s 1.00 m/s | m = 40 kg m = 45 kg | 0 | ||||||
25.0 | 0.50 m/s | m = 40 kg | 1.2462 | 1.8156 | 1.2256 | 1.0030 | 1.4182 | 1.0069 |
m = 45 kg | 1.4020 | 2.0426 | 1.3788 | 1.1284 | 1.5954 | 1.1328 | ||
0.75 m/s 1 m/s | m = 40 kg m = 45 kg | 0 | ||||||
27.5 | 0.50 m/s 0.75 m/s 1.00 m/s | m = 40 kg m = 45 kg | 0 | |||||
30.0 | 0.50 m/s | m = 40 kg | 0.9647 | 1.3386 | 0.9394 | 1.2761 | 1.8975 | 1.2842 |
m = 45 kg | 1.0853 | 1.5059 | 1.0568 | 1.4356 | 2.1347 | 1.4447 | ||
0.75 m/s | m = 40 kg | 0.9647 | 1.3386 | 0.9394 | 1.2761 | 1.8975 | 1.2842 | |
m = 45 kg | 1.0853 | 1.5059 | 1.0568 | 1.4356 | 2.1347 | 1.4447 | ||
1.00 m/s | m = 40 kg | 0.9647 | 1.3386 | 0.9394 | 1.2761 | 1.8975 | 1.2842 | |
m = 45 kg | 1.0853 | 1.5059 | 1.0568 | 1.4356 | 2.1347 | 1.4447 | ||
32.5 | 0.50 m/s 0.75 m/s 1.00 m/s | m = 40 kg m = 45 kg | 0 | |||||
35.0 | 0.50 m/s | m = 40 kg | 0.6711 | 0.9270 | 0.6582 | 1.4746 | 2.4565 | 1.4789 |
m = 45 kg | 0.7550 | 1.0429 | 0.7405 | 1.6589 | 2.7636 | 1.6638 | ||
0.75 m/s 1.00 m/s | m = 40 kg m = 45 kg | 0 | ||||||
37.5 | 0.75 m/s | m = 40 kg | 0.5380 | 0.0000 | 0.5237 | 1.5060 | 2.7913 | 1.5023 |
m = 45 kg | 0.6052 | 0.0000 | 0.5892 | 1.6943 | 3.1402 | 1.6901 | ||
0.50 m/s 1.00 m/s | m = 40 kg m = 45 kg | 0 | ||||||
40.0 | 0.50 m/s | m = 40 kg | 0.4057 | 0.5721 | 0.3960 | 1.4649 | 3.2122 | 1.4676 |
m = 45 kg | 0.4564 | 0.6436 | 0.4455 | 1.6480 | 3.6138 | 1.6511 | ||
0.75 m/s | m = 40 kg m = 45 kg | 0 | ||||||
1.00 m/s | m = 40 kg | 0.4057 | 0.5721 | 0.3960 | 1.4649 | 3.2122 | 1.4676 | |
m = 45 kg | 0.4564 | 0.6436 | 0.4455 | 1.6480 | 3.6138 | 1.6511 | ||
42.5 | 0.50 m/s 0.75 m/s 1.00 m/s | m = 40 kg m = 45 kg | 0 | |||||
45.0 | 0.5 m/s | m = 40 kg | 0.1930 | 0.2843 | 0.1889 | 1.1471 | 4.7345 | 1.1480 |
m = 45 kg | 0.2171 | 0.3199 | 0.2125 | 1.2905 | 5.3263 | 1.2915 | ||
0.75 m/s | m = 40 kg | 0.1930 | 0.2843 | 0.1889 | 1.1471 | 4.7345 | 1.1480 | |
m = 45 kg | 0.2171 | 0.3199 | 0.2125 | 1.2905 | 5.3263 | 1.2915 | ||
1.00 m/s | m = 40 kg m = 45 kg | 0 | ||||||
47.5 | 0.50 m/s 0.75 m/s 1.00 m/s | m = 40 kg m = 45 kg | 0 | |||||
50.0 | 0.5 m/s | m = 40 kg | 0.0528 | 0.0830 | 0.0512 | 0.4679 | 4.6707 | 0.4706 |
m = 45 kg | 0.0594 | 0.0934 | 0.0576 | 0.5263 | 5.2546 | 0.5295 | ||
0.75 m/s | m = 40 kg m = 45 kg | 0 | ||||||
1.00 m/s | m = 40 kg | 0.0528 | 0.0830 | 0.0512 | 0.4679 | 4.6707 | 0.4706 | |
m = 45 kg | 0.0594 | 0.0934 | 0.0576 | 0.5263 | 5.2546 | 0.5295 | ||
52.5 | 0.75 m/s | m = 40 kg | 0.0138 | 0.0000 | 0.0136 | 0.1420 | 0.5573 | 0.1415 |
m = 45 kg | 0.0155 | 0.0000 | 0.0153 | 0.1597 | 0.6270 | 0.1592 | ||
0.5 m/s 1.00 m/s | m = 40 kg m = 45 kg | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mourched, B.; Hoxha, M.; Abdelgalil, A.; Ferko, N.; Abdallah, M.; Potams, A.; Lushi, A.; Turan, H.I.; Vrtagic, S. Piezoelectric-Based Sensor Concept and Design with Machine Learning-Enabled Using COMSOL Multiphysics. Appl. Sci. 2022, 12, 9798. https://doi.org/10.3390/app12199798
Mourched B, Hoxha M, Abdelgalil A, Ferko N, Abdallah M, Potams A, Lushi A, Turan HI, Vrtagic S. Piezoelectric-Based Sensor Concept and Design with Machine Learning-Enabled Using COMSOL Multiphysics. Applied Sciences. 2022; 12(19):9798. https://doi.org/10.3390/app12199798
Chicago/Turabian StyleMourched, Bachar, Mario Hoxha, Ahmed Abdelgalil, Ndricim Ferko, Mariam Abdallah, Albert Potams, Ardit Lushi, Halil Ibrahim Turan, and Sabahudin Vrtagic. 2022. "Piezoelectric-Based Sensor Concept and Design with Machine Learning-Enabled Using COMSOL Multiphysics" Applied Sciences 12, no. 19: 9798. https://doi.org/10.3390/app12199798
APA StyleMourched, B., Hoxha, M., Abdelgalil, A., Ferko, N., Abdallah, M., Potams, A., Lushi, A., Turan, H. I., & Vrtagic, S. (2022). Piezoelectric-Based Sensor Concept and Design with Machine Learning-Enabled Using COMSOL Multiphysics. Applied Sciences, 12(19), 9798. https://doi.org/10.3390/app12199798