Adapting Mechanisms for In-Pipe Inspection Robots: A Review
Abstract
:1. Introduction
2. Linkages for Adapting Mechanisms
3. Analysis of Adapting Mechanisms
3.1. Adapting Mechanisms Based on Slider-Crank Linkage
3.2. Adapting Mechanisms Based on Pantograph Linkages
3.3. Adapting Mechanisms Based on Combined Linkages
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mills, G.H.; Jackson, A.E.; Richardson, R.C. Advances in the Inspection of Unpiggable Pipelines. Robotics 2017, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Bubar, B.G. Pipeline Pigging and Inspection. In Pipeline Planning and Construction Field Manual; Shashi Menon, E., Ed.; Gulf Professional Publishing: Oxford, UK, 2011; pp. 319–339. [Google Scholar]
- Shukla, A.; Karki, H. Application of robotics in onshore oil and gas industry—A review Part I. Robot. Auton. Syst. 2017, 75, 490–507. [Google Scholar] [CrossRef]
- Song, Z.; Ren, H.; Zhang, J.; Ge, S.S. Kinematic analysis and motion control of wheeled mobile robots in cylindrical workspaces. IEEE Trans. Autom. Sci. Eng. 2016, 13, 1207–1214. [Google Scholar] [CrossRef]
- Koledoye, M.A.; De Martini, D.; Carvani, M.; Facchinetti, T. Design of a Mobile Robot for Air Ducts Exploration. Robotics 2017, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Knedlová, J.; Bilek, O.; Sámek, D.; Chalupa, P. Design and construction of an inspection robot for the sewage pipes. In Proceedings of the Multi-Conference on Engineering and Technology Innovation 2016 (IMETI 2016), Taichung, Taiwan, 28 October–1 November 2016; Volume 121, p. 01006. [Google Scholar]
- Hayat, A.; Elangovan, K.; Rajesh Elara, M.; Teja, M. Tarantula: Design, modeling, and kinematic identification of a quadruped wheeled robot. Appl. Sci. 2019, 9, 94. [Google Scholar] [CrossRef] [Green Version]
- Lapusan, C.; Rusu, C.; Brai, L.; Mandru, D. Development of a multifunctional robotic arm for in-pipe robots. In Proceedings of the 7th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Bucharest, Romania, 25–27 June 2015; pp. 11–15. [Google Scholar]
- Wahed, M.A.A.; Arshad, M.R. Wall-press type pipe inspection robot. In Proceedings of the 2017 IEEE 2nd International Conference on Automatic Control and Intelligent Systems (I2CACIS), Kota Kinabalu, Malaysia, 21 October 2017; pp. 185–190. [Google Scholar]
- Feng, G.; Li, W.; Zhang, H.; Li, Z.; He, Z. Development of a Wheeled and Wall-pressing Type In-pipe Robot for Water Pipelines Cleaning and Its Traveling Capability. Mechanika 2020, 2, 26. [Google Scholar] [CrossRef]
- Tatar, M.O.; Ardelean, I.; Mandru, D. Adaptable Robots Based on Linkage Type Mechanisms for Pipeline Inspection Tasks. Appl. Mech. Mater. 2015, 762, 163–168. [Google Scholar] [CrossRef]
- Tatar, M.O.; Cirebea, C.; Aluţei, A.; Mândru, D. The design of adaptable indoor pipeline inspection robots. In Proceedings of the 2012 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 24–27 May 2012; pp. 443–448. [Google Scholar]
- Yu, X.; Chen, Y.; Chen, M.Z.Q.; Lam, J. Development of a novel in-pipe walking robot. In Proceedings of the 2015 IEEE International Conference on Information and Automation, Lijiang, China, 8–10 August 2015; pp. 364–368. [Google Scholar]
- Tenreiro Machado, J.A.; Silva, M.F. An overview of legged robots. In Proceedings of the International Symposium on Mathematical Methods in Engineering (MME2006), Ankara, Turkey, 27–29 April 2006. [Google Scholar]
- Nakazato, Y.; Sonobe, Y.; Toyama, S. Development of an in-pipe micro mobile robot using peristalsis motion. J. Mech. Sci. Technol. 2010, 24, 51–54. [Google Scholar] [CrossRef]
- Hayashi, K.; Akagi, T.; Dohta, S.; Kobayashi, W.; Shinohara, T.; Kusunose, K. Improvement of Pipe Holding Mechanism and Inchworm Type Flexible Pipe Inspection Robot. Int. J. Mech. Eng. Rob. Res. 2020, 9, 894–899. [Google Scholar] [CrossRef]
- Li, P.; Ma, S.; Lyu, C.; Jiang, X.; Liu, Y. Energy-efficient control of a screw-drive pipe robot with consideration of actuator’s characteristics. Robot. Biomim. 2016, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Tang, M.; Lyu, C.; Fang, M.; Duan, X.; Liu, Y. Design and analysis of a novel active screw-drive pipe robot. Adv. Mech. Eng. 2018, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Virgala, I.; Kelemen, M.; Prada, E.; Sukop, M.; Kot, T.; Bobovskýc, Z.; Varga, M.; Ferencík, P. A snake robot for locomotion in a pipe using trapezium-like travelling wave. Mech. Mach. Theory 2021, 158, 104221. [Google Scholar] [CrossRef]
- Kakogawa, A.; Ma, S. A Multi-link in-pipe inspection robot composed of active and passive compliant joints. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 6472–6478. [Google Scholar]
- Chen, J.; Chen, T.; Deng, Z. Configuration design method for in-pipe robot locomotion mechanism. In Proceedings of the 2010 International Conference on Digital Manufacturing and Automation, Changcha, China, 18–20 December 2010; pp. 426–429. [Google Scholar]
- Chen, J.; Chen, T.; Deng, Z. Scheme design of extended configuration for in-pipe robot adapting mechanism. In Proceedings of the 2011 Third International Conference on Measuring Technology and Mechatronics Automation, Shanghai, China, 6–7 January 2011; pp. 210–212. [Google Scholar]
- Ciszewski, M.; Buratowski, T.; Giergiel, M. Modeling, Simulation and Control of a Pipe Inspection Mobile Robot with an Active Adaptation System. IFAC Pap. 2018, 51, 132–137. [Google Scholar] [CrossRef]
- Ab Rashid, M.Z.; Yakub, M.F.; Salim, S.A.K.; Mamat, N.; Putra, S.M.; Roslan, S.A. Modeling of the in-pipe inspection robot: A comprehensive review. Ocean. Eng. 2020, 203, 107206. [Google Scholar] [CrossRef]
- Ren, T.; Zhang, Y.; Li, Y.; Chen, Y.; Liu, Q. Driving Mechanisms, Motion, and Mechanics of Screw Drive In-Pipe Robots: A Review. Appl. Sci. 2019, 9, 2514. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.; Kaiwart, A.; Dubey, N.D.; Naseer, F.; Pradhan, S. A review on various types of in-pipe inspection robot. Mater. Today Proc. 2021, 50, 1425–1434. [Google Scholar] [CrossRef]
- Siqueira, E.B.; Azzolin, R.Z.; da Costa Botelho, S.S.; de Oliveira, V.M. Inside Pipe Inspection: A Review Considering the Locomotion Systems. In CONTROLO 2016. Lecture Notes in Electrical Engineering; Garrido, P., Soares, F., Moreira, A., Eds.; Springer: Cham, Switzerland, 2016; Volume 402, pp. 449–458. [Google Scholar]
- Roslin, N.S.; Anuar, A.; Jalal, M.F.A.; Sahari, K.S.M. A Review: Hybrid Locomotion of In-pipe Inspection Robot. Procedia Eng. 2012, 41, 1456–1462. [Google Scholar] [CrossRef] [Green Version]
- Satheesh Kumar, G.; Arun, D. In-pipe robot mechanisms—State-of-the-art review. In Trends in Mechanical and Biomedical Design; Akinlabi, E., Ramkumar, P., Selvaraj, M., Eds.; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2021; pp. 703–713. [Google Scholar]
- Yen, V.T.; Nan, W.Y.; Van Cuong, P. Robust Adaptive Sliding Mode Neural Networks Control for Industrial Robot Manipulators. Int. J. Control Autom. Syst. 2019, 17, 783–792. [Google Scholar] [CrossRef]
- Ehrlich, M.; Tsur, E.E. Neuromorphic adaptive body leveling in a bioinspired hexapod walking robot. In Proceedings of the 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS), Berlin, Germany, 7–9 October 2021; pp. 1–4. [Google Scholar]
- Yin, C.; Tang, D.; Deng, Z. Development of ray nondestructive detecting and grinding robot for weld seam in pipe. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics, Macau, China, 5–8 December 2017; pp. 208–214. [Google Scholar]
- Min, J.; Setiawan, Y.D.; Pratama, P.S.; Kim, S.B.; Kim, D.K. Development and controller design of wheeled-type pipe inspection robot. In Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Delhi, India, 24–27 September 2014; pp. 789–795. [Google Scholar]
- Aldulaimi, H.; Trong, H.N.; Pratama, P.S.; Yoo, H.R.; Kim, D.K.; Duy, V.H.; Kim, S.B. Diameter-adjustable controller design of wheel type pipe inspection robot using fuzzy logic control method. In AETA 2015: Recent Advances in Electrical Engineering and Related Sciences; Duy, V.H., Dao, T.T., Zelinka, I., Choi, H.-S., Chadli, M., Eds.; Lecture Notes in Electrical Engineering; Springer International Publishing: Cham, Switzerland, 2016; pp. 685–686. [Google Scholar]
- Zheng, J.; Liu, M.; Jiang, H.; Dou, Y. Design of a self-adaptive pipe robot based on multi—Axis differential system. In Proceedings of the 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 December 2017; pp. 1461–1471. [Google Scholar]
- Yang, S.U.; Kim, H.M.; Suh, J.K.; Choi, Y.S.; Mun, H.M.; Park, C.M.; Moon, H.; Choi, H.R. Novel robot mechanism capable of 3D differential driving inside pipelines. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2014), Chicago, IL, USA, 14–18 September 2014; pp. 1944–1949. [Google Scholar]
- Ren, Y.; Zhang, Y.; Li, Y.; Xian, L. Development of an active helical drive self-balancing in-pipe robot based on compound planetary gearing. Int. J. Robot. Autom. 2019, 34, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Kakogawa, A.; Ma, S.; Hirose, S. An in-pipe robot with underactuated parallelogram crawler modules. In Proceedings of the 2014 IEEE International Conference on Robotics & Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 1687–1692. [Google Scholar]
- Roh, S.; Choi, H.R. Differential-drive in-pipe robot for moving inside urban gas pipelines. IEEE Trans. Robot. 2005, 21, 1–17. [Google Scholar]
- Roh, S.; Kim, D.W.; Lee, J.S.; Moon, H.; Choi, H.R. In-pipe robot based on selective drive mechanism. Int. J. Control. Autom. Syst. 2009, 7, 105–112. [Google Scholar] [CrossRef]
- Kim, J.H.; Sharma, G.; Iyengar, S.S. FAMPER: A fully autonomous mobile robot for pipeline exploration. In Proceedings of the 2010 IEEE International Conference on Industrial Technology, Via del Mar, Chile, 14–17 March 2010; pp. 517–523. [Google Scholar]
- Kwon, Y.; Yi, B. Design and Motion Planning of a Two-Module Collaborative Indoor Pipeline Inspection Robot. IEEE Trans. Robot. 2012, 28, 681–696. [Google Scholar] [CrossRef]
- Okada, T.; Sanemori, T. MOGRER: A Vehicle Study and Realization for In-Pipe Inspection Tasks. IEEE J. Robot. Autom. 1987, 3, 573–582. [Google Scholar] [CrossRef]
- Tatar, M.O.; Cirebea, C.; Mandru, D. The development of an in-pipe minirobot for various pipe sizes. In Proceedings of the 2012 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 24–27 May 2012; pp. 443–448. [Google Scholar]
- Oya, T.; Okada, T. Development of a steerable, wheel-type, in-pipe robot and its path planning. Adv. Robot. 2005, 19, 635–650. [Google Scholar] [CrossRef]
- Park, J.; Kim, T.H.; Yang, H.S. Development of an actively adaptable in-pipe robot. In Proceedings of the 2009 IEEE International Conference on Mechatronics, Malaga, Spain, 14–17 April 2009; pp. 1–5. [Google Scholar]
- Park, J.; Hyun, D.; Cho, W.H.; Kim, T.H.; Yang, H.S. Normal-Force Control for an In-Pipe Robot According to the Inclination of Pipelines. IEEE Trans. Ind. Electron. 2011, 58, 5304–5310. [Google Scholar] [CrossRef]
- Choi, H.R.; Roh, S. In-pipe robot with active steering capability for moving inside pipelines. In Bioinspiration and Robotics: Walking and Climbing Robots; Habib, M.K., Ed.; I-Tech: Vienna, Austria, 2007; pp. 375–402. [Google Scholar]
- Jiang, S.; Jiang, X.; Lu, J.; Li, J.; Lv, X. Research on a tri-axial differential-drive in-pipe robot. In Intelligent Robotics and Applications. ICIRA 2008. Lecture Notes in Computer Science; Xiong, C., Huang, Y., Xiong, Y., Liu, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5314, pp. 1031–1040. [Google Scholar]
- Tatar, M.O.; Cirebea, C.; Alutei, A.; Mandru, D. Driving modules with adaptable structure for in pipe inspection modular robotic systems. In Proceedings of the 6th International Conference Mechatronic Systems and Materials, MSM 2010, Opole, Poland, 5–8 July 2010. [Google Scholar]
- Tatar, O.; Mandru, D.; Ardelean, I. Development of mobile minirobots for in pipe inspection tasks. Mechanika 2007, 6, 60–64. [Google Scholar]
- Chang, F.S.; Hwang, L.T.; Liu, C.F.; Wang, W.S.; Lee, J.N.; Wang, S.M.; Cho, K.Y. Design of a pipeline inspection robot with belt driven ridged cone shaped skate model. In Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, 6–9 December 2015; pp. 787–792. [Google Scholar]
- Ou, C.W.; Chao, C.J.; Chang, F.S.; Wang, S.M.; Lee, J.N.; Hung, R.D.; Chiu, B.; Cho, K.Y.; Hwang, L.T. Design of an adjustable pipeline inspection robot with three belt driven mechanical modules. In Proceedings of the 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 6–9 August 2017; pp. 1989–1994. [Google Scholar]
- Ling, Z.; Yu, X.; Yan, S.; Chen, Y. Design and numerical simulation of a self-adaptive variable diameter robot for in-pipe non-destructive inspection. IOP Conf. Ser. Earth Environ. Sci. 2020, 514, 022032. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X. Stable motion analysis and verification of a radial adjustable pipeline robot. In Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, 3–7 December 2016; pp. 1023–1028. [Google Scholar]
- Rashid, M.Z.A.; Yakub, F.; Salim, S.A.S.; Roslan, S.A.; Shah, H.N.M.; Yeshmukhametov, A.; Yamamoto, Y. Recent Trends of the In-Pipe Inspection Robotic System from Academia and Industry Perspectives. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1051, 012034. [Google Scholar] [CrossRef]
Ref. No. | Authors | Type of Linkage | Adapting Mechanism Type | Robot Length (mm) | Locomotion Type | Traction Force (N) | Diameter Range (mm) | Pipe Geometry | ||
---|---|---|---|---|---|---|---|---|---|---|
Max Slope (°) | Branch | Elbow (°) | ||||||||
[32] | Yin et al. | Slider-crank (1DOF) | Passive | Unk. | Wheel | 341.4 | 270–380 | 20 | No | Unk. |
[33] [34] | Min et al. | Active&Passive | 685 | Wheel | Unk. | 300–500 | 35 | No | Unk. | |
Aldulaimi et al. | (2 modules) | |||||||||
[35] | Zheng et al. | Active | 370 | Wheel | Unk. | 330–372 | Unk. | No | Unk. | |
[36] | Yang et al. | Active | 128 | Wheel | Unk. | 130–180 | Unk. | No | Unk. | |
[11] | Tatar et al. | Independently driven slider-crank (2DOF) | Passive | 300 | Wheel | 10.4 | 140–190 | 90 | No | 45 |
[38] | Kakogawa et al. | Passive | 235 | Track | Unk. | 136–226 | 30 | No | Unk. | |
[39,40] | Roh et al. | Passive | 150 | Wheel | 9.8 | 85–109 | 90 | T | 90 | |
[41] | Kim et al. | Passive | 148 | Track | Unk. | 127–157 | 90 | Y and T | 45; 90 | |
[42] | Kwon et al. | Passive | 230 | Track | Unk. | 80–100 | 90 | T | 90 | |
[44] | Tatar et al. | Pantograph | Passive | Unk. | Wheel | Unk. | 50–70 | Unk. | No | Unk. |
[45] | Oya et al. | Passive | 200 | Wheel | 8.1 | 140–210 | 90 | T | 90 | |
[46,47] | Park et al. | Active | 390 | Track | Unk. | 400–700 | 90 | T | 90 | |
[48] | Choi et al. | Passive | Unk. | Wheel | Unk. | Unk. | 90 | T | 90 | |
[49] | Jiang et al. | Combined (Four-bar and slider-crank linkages) | Passive | 550 | Wheel | 450 | 275–300 | 90 | No | 90 |
[50] | Tatar et al. | Passive | 140 | Wheel | 3 | 100–125 | 90 | No | 90 | |
[51] | Passive | 280 | Wheel | 18.5 | 140–200 | Unk. | No | 45 | ||
[52] | Chang et al. | Active | 460 | Wheel | Unk. | 300–390 | Unk. | T | 90 | |
[53] | Ou et al. | Active | 410 | Track | Unk. | 300–450 | 30 | Y and T | Unk. | |
[55] | Zhang et al. | Active | 380 | Track | Unk. | 220–320 | Unk. | No | 90 |
Type of Linkage | Slider-Crank (1 DOF) | Independently Driven Slider-Crank (2DOF) | Pantograph | Combined (Four-Bar and Slider-Crank Linkages) |
---|---|---|---|---|
Suitability | Wheel based robots | Wheel/track-based robots | Wheel/track-based robots | Wheel/track-based robots |
Horizontal pipes | Horizontal/vertical pipes | Horizontal/vertical pipes | Horizontal/vertical pipes | |
Slightly inclined pipes | Elbows Y- and/or T-branches | Elbows T-branches | Elbows Y- and/or T-branches | |
Advantages | Simple construction | Simple construction | Larger stroke | Active/passive adapting mechanism |
Active/passive adapting mechanism | Ensures a higher applied pressure on the pipe wall | Active/passive adapting mechanism | Ensures a higher applied pressure on the pipe wall | |
Three-axis differential drive | Three-axis differential drive | Three-axis differential drive | ||
Lighter and smaller in size | Small size | |||
Disadvantages | At least two interconnected modules are needed to ensure stability | More complicated mechanical structure | Stability issues | More complicated mechanical structure |
The wheels may get stuck in the holes inside the pipe | Passive adapting mechanism | Larger radial dimension | Larger axial dimension |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusu, C.; Tatar, M.O. Adapting Mechanisms for In-Pipe Inspection Robots: A Review. Appl. Sci. 2022, 12, 6191. https://doi.org/10.3390/app12126191
Rusu C, Tatar MO. Adapting Mechanisms for In-Pipe Inspection Robots: A Review. Applied Sciences. 2022; 12(12):6191. https://doi.org/10.3390/app12126191
Chicago/Turabian StyleRusu, Calin, and Mihai Olimpiu Tatar. 2022. "Adapting Mechanisms for In-Pipe Inspection Robots: A Review" Applied Sciences 12, no. 12: 6191. https://doi.org/10.3390/app12126191
APA StyleRusu, C., & Tatar, M. O. (2022). Adapting Mechanisms for In-Pipe Inspection Robots: A Review. Applied Sciences, 12(12), 6191. https://doi.org/10.3390/app12126191