Importance of Image Enhancement and CDF for Fault Assessment of Photovoltaic Module Using IR Thermal Image
Abstract
:1. Introduction
2. Review of Related Works
2.1. Common Solar Panel Defects
2.2. Infrared Thermography
2.3. Cumulative Distribution Function (CDF)
3. Methodology of the Proposed Concept
3.1. Data Acquisition
3.2. Pre-Image Processing
Algorithm 1. Pre-processing layer |
The steps are as follows: Step 1: Loading and Reading of Images. In this step, the raw thermal solar cell images are to import the libraries of the samples to use for this proposal. First, the MATLAB function “dir” prepares the listing of the files and folders in the current folder for the task. Then, the “imread” function was implemented at this stage. Below are the description syntaxes of these two functions. A = imread(filename, fmt); %this function reads the image from the file specified by filename and saved in the variable “A” dir name; %provides the lists files and folders in the current folder Step 2: Resizing of Images. In order to visualize the change in the images, the two functions were created; the first is to display the sample (original) image and second is to compare the original and resulting image. In this study, the base sizes of all sample images are set into a 400 × 400 pixel value. The MATLAB function “imresize” provides the image in the scale size necessary for the required task. The function “imshow” displays the image for visual verification. Step 3. Image Filtering. In this study, median filtering (Pp) was implemented to remove noise preserving the edges of the sample images. The noise reduction aims to improve the results or the later processing of this study. The median filter operates by moving the image pixel by pixel and replacing each value with neighboring pixel’s median value. The pattern of neighbors is known as the “window,” and it slides pixel by pixel across the entire image, 2 pixel by pixel. The median is calculated by first sorting all of the pixel values in the window into numerical order and then replacing the pixel under consideration with the pixel with the middle (median) value. Equation (1) moved to the initial dataset (DO) to produce the pre-processed dataset (PD).
PD = DO * Pp
|
3.3. Grayscale Image
3.4. Equalization of a Histogram
3.5. Adaptive Histogram Equalization
Algorithm 2. Data mining layer |
The steps are as follows: Step 1: Load the pre-processed dataset from Algorithm 1 and assign it as PD. Step 2: Grayscaling of image. In this study, grayscale (GS) representations are frequently used for extracting descriptors rather than directly operating on color images because grayscale simplifies the algorithm and reduces computational requirements. The MATLAB function “rgb2gray” was utilized to convert the sample image to a grayscale image, which removes the hue and saturation content information while retaining the luminance. Equation (8) provided the grayscale implementation (GSI).
GSI = (PD * GS)
Step 3: Histogram Equalization. The histogram equalization (HE) enables areas with low local contrast to gain a boost in contrast. Equalization of the histogram accomplishes this by effectively spreading out the densely populated intensity values that previously weakened image contrast. The “histeq” function of MATLAB is used to transform the grayscale image. As displayed in Equation (9), the implemented histogram equalization on the GSI.
HEI = (GSI * HE)
Note: The operator “*” in Equation (9) performs the MATLAB function of applying the histogram equalization on the said image dataset. Step 4: Adaptive Histogram Equalization. In this paper, the adaptive histogram equalization technique is used to improve the contrast in images by computing multiple histograms, each corresponding to a different section of the image, and using them to redistribute the image’s lightness values. As a result, it is well suited for increasing local contrast and sharpening the edges in each region of an image. The “adapthisteq” function operates on small regions in the image, called tiles. This function increases the contrast of each tile so that the output region’s histogram approximates a specified histogram. Equation (10) illustrates the adaptive histogram equalization.
AHEI = (HEI * AHE)
Note: The operator “*” in Equation (10) performs the MATLAB function of adaptive histogram equalization which is implemented on the said image dataset. Step 5: Gray-level thresholding. In this study, the quality of gray-level thresholding of an image is a critical issue, therefore, the selection of a right grey-level threshold variance is important. In this paper, the global gray-level thresholding manages to remove the unnecessary segments of the image. The function “graythresh (I)” of MATLAB computes a global threshold T of the image I, using Otsu’s method. Otsu’s method selects a threshold that minimizes the intraclass variance of the black and white pixels that have been thresholded. With imbinarize, the global threshold T can be used to convert a grayscale image to a binary image. Equation (11) displays the implemented G=gray-level threshold (GLT).
GLTD = (AHEI * GLT)
Note: The operator “*” in Equation (11) performs the MATLAB function of gray-level thresholding. |
3.6. Image Classifier
- (1)
- INPUT: 32 × 32 × 1
- (2)
- CONV1: 3 × 3 size, 32 filters, 1 stride
- (3)
- ReLu: max (0, hθ(x))
- (4)
- POOL: 2 × 2 size, 1 stride
- (5)
- CONV2: 3 × 3 size, 64 filters, 1 stride
- (6)
- ReLU: max (0, hθ(x))
- (7)
- POOL: 2 × 2 size, 1 stride
- (8)
- Fully Connected (FC): 1024 Hidden Neurons
- (9)
- DROPOUT: p = 0.5
- (10)
- FC: 2 output classes
4. Results and Discussion
4.1. Histogram Comparison
4.2. CDF Comparison
4.3. CDF Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olatomiwa, L.; Blamchard, R.; Mekhilef, S.; Akinyele, D. Hybrid renewable energy supply for rural healthcare facilities: An approach to quality healthcare delivery. Sustain. Energy Technol. Assess. 2018, 30, 121–138. [Google Scholar] [CrossRef] [Green Version]
- Tolentino, L.K.; Valenzuela, I.; Serfa Juan, R. Overhead interspersing of redundancy bits reduction algorithm by enhanced error detection correction code. J. Eng. Sci. Technol. Rev. 2019, 12, 34–39. [Google Scholar] [CrossRef]
- Tolentino, L.K.; Febus, E.C.; Chung, W.-Y. Characterization of a 0.35 micro-based analog MPPT IC at various process corners. J. Telecommun. Electron. Comput. Eng. 2018, 10, 179–186. [Google Scholar]
- Cho, J.; Park, M.P.; Park, A.R.; Lee, O.C. Application of photovoltaic systems for agriculture: A study on the relationship between power generation and farming for the improvement of photovoltaic applications in agriculture. Energies 2020, 13, 4815. [Google Scholar] [CrossRef]
- Kuik, O.; Branger, F.; Quirion, P. Competitive advantage in the renewable energy industry: Evidence from a gravity model for photovoltaic device design. Renew. Energy 2019, 131, 472–481. [Google Scholar] [CrossRef]
- Zhou, D. Perovskite-based solar cells: Materials, methods, and future perspectives. J. Nanomater. 2017, 2018, 8148072. [Google Scholar] [CrossRef]
- Kim, Y.; Seo, K.; Harrington, R.; Lee, Y.; Kim, H.; Kim, S. High accuracy modelling for solar PV power generation using noble BD-LSTM-based neural networks with EMA. Appl. Sci. 2020, 10, 7339. [Google Scholar] [CrossRef]
- Ziar, H.; Manganiello, P.; Isabella, O.; Zeman, M. Photovoltatronics: Intelligent PV-based devices for energy and information applications. Energy Environ. Sci. 2021, 14, 106–126. [Google Scholar] [CrossRef]
- Chandrasekar, M.; Suresh, S.; Senthilkumar, T.; Karthikeyan, M.G. Passive cooling of standalone flat PV module with cotton wick structures. Energy Convers. Manag. 2013, 71, 43–50. [Google Scholar] [CrossRef]
- Sharma, R.; Gupta, A.; Nandan, G.; Dwivedi, G.; Kumar, S. Life span and overall performance enhancement of solar photovoltaic cell using water as coolant: A recent review. Mater. Process. Charact. 2018, 5, 18202–18210. [Google Scholar] [CrossRef]
- Mozumder, M.S.; Mourad, A.; Pervez, H.; Surkatti, R. Recent developments in multifunctional coatings for solar panel applications: A review. Sol. Energy Mater. Sol. Cells 2019, 189, 75–102. [Google Scholar] [CrossRef]
- Pereira, C.G.; Ramaswamy, H.; Oliberia Giarola, T.M.; Resende, J.V. Infrared thermography as a complementary tool for the evaluation of heat transfer in the freezing of fruit juice model solutions. Int. J. Therm. Sci. 2017, 120, 386–399. [Google Scholar] [CrossRef]
- Boukhanouf, R.; Haddad, A.; North, M.T.; Buffone, C. Experimental investigation of a flat plate heat pipe performance using IR thermal imaging camera. Appl. Therm. Eng. 2006, 26, 2148–2156. [Google Scholar] [CrossRef]
- Taheri-Garavand, A.; Ahmadi, H.; Omid, M.; Mohtasebi, S.; Mollazade, K.; Smith, A.J.R.; Carlomagno, G.M. An intelligent approach for cooling radiator fault diagnosis based on infrared thermal image processing technique. Appl. Therm. Eng. 2015, 87, 434–443. [Google Scholar] [CrossRef]
- Liao, K.C.; Lu, J.H. Using UAV to Detect Solar Module Fault Conditions of a Solar Power Farm with IR and Visual Image Analysis. Appl. Sci. 2021, 11, 1835. [Google Scholar] [CrossRef]
- Gusella, V.; Cluni, F.; Liberottu, R. Feasibility of a Thermography Nondestructive Technique for Determining the Quality of Historical Frescoed Masonries: Applications on the Templar Church of San Bevignate. Appl. Sci. 2021, 11, 281. [Google Scholar] [CrossRef]
- Sassine, E. A practical method for in-situ thermal characterization of walls. Case Stud. Therm. Eng. 2016, 8, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Trug, N.T.; Uchiyama, H.; Nagahara, H.; Shimada, A.; Taniguchi, R.I. Adapting Local Features for Face Detection in Thermal Image. Sensors 2017, 17, 2741. [Google Scholar] [CrossRef] [Green Version]
- Chidurala, V.; Li, X. Occupancy Estimation Using Thermal Imaging Sensors and Machine Learning Algorithms. IEEE Sens. J. 2021, 21, 8627–8638. [Google Scholar] [CrossRef]
- Sadeghi-Goughari, M.; Mojra, A. Intraoperative thermal imaging of brain tumors using a haptic-thermal robot with application in minimally invasive neurosurgery. Appl. Therm. Eng. 2015, 81, 600–610. [Google Scholar] [CrossRef]
- Marzec, M.; Wilczynski, S. Automatic Mobile Warning System against People with Elevated Body Temperature. Appl. Sci. 2021, 11, 4721. [Google Scholar] [CrossRef]
- Dhimish, M.; Holmes, V.; Mehrdadi, B.; Dales, M. The impact of cracks on photovoltaic power performance. J. Sci. Adv. Mater. Devices 2017, 2, 199–209. [Google Scholar] [CrossRef]
- Nos, O.; Favre, W.; Jay, F.; Ozanne, F.; Valla, A.; Alvarez, J.; Munoz, D.; Ribeyron, P.J. Quality control method based on photoluminescence imaging for the performance prediction od c-Si/a-Si:H heterojunction solar cells in industrial production lines. Sol. Energy Mater. Sol. Cells 2016, 144, 210–220. [Google Scholar] [CrossRef]
- Humood, M.; Beheshti, A.; Polycarpu, A. Surface reliability of annealed and tempered solar protective glasses: Indentation and scratch behavior. Sol. Energy 2017, 142, 13–25. [Google Scholar] [CrossRef]
- Olalla, C.; Hasan, M.N.; Deline, C.; Maksimovic, D. Mitigation of hot-spots in photovoltaic systems using distributed power electronics. Energies 2018, 11, 726. [Google Scholar] [CrossRef] [Green Version]
- Bdour, M.; Dalala, Z.; Al-Addous, M.; Radideh, A.; Al-Sadi, A. A Comprehensive Evaluation on Types of Microcracks and Possible Effects on Power Degradation in Photovoltaic Solar Panels. Sustainability 2020, 12, 6416. [Google Scholar] [CrossRef]
- Shin, W.G.; Ko, S.W.; Song, H.J.; Ju, Y.C.; Hwang, H.M.; Kang, G.H. Origin of byass diode fault in c-Si photovoltaic modules: Leakage current under high surrounding temperature. Energies 2018, 11, 2416. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.D.; Su, T.C.; Lin, H.Y. Fusion of Infrared thermal image and visible image for 3D thermal model reconstruction using smartphone sensors. Sensors 2018, 18, 2003. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Li, Q.; Zheng, C.; Hong, Y.; Xu, Z.; Wang, H.; Shen, W.; Kaur, S.; Ghosh, P.; Qiu, M. High-temperature infrared camouflage with efficient thermal management. Light Sci. Appl. 2020, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- Carlomagno, G.M.; Cardone, G. Infrared thermography for convective heat transfer measurements. Exp. Fluids 2010, 49, 1187–1218. [Google Scholar] [CrossRef] [Green Version]
- Balasubramani, G.; Thangavelu, V.; Chinnusamy, M.; Subramaniam, U.; Padmanaban, S.; Mihet-Popa, L. Infrared thermlagraphy based defects testing of solar photovoltaic panel with fuzzy rule-based evaluation. Energies 2020, 13, 1343. [Google Scholar] [CrossRef] [Green Version]
- Kovacs, P.; Lehner, B.; Thummerer, G.; Mayr, G.; Burgholzer, P.; Huemer, M. Deep learning approaches for thermographic imaging. J. Appl. Phys. 2020, 128, 155103. [Google Scholar] [CrossRef]
- Jeong, H.; Kwon, G.R.; Lee, S.W. Deterioration Diagnosis of Solar Module using Thermal and Visible Image Processing. Energies 2020, 13, 2856. [Google Scholar] [CrossRef]
- Herraiz, A.H.; Marugan, A.P.; Marquez, F.P. Photovoltaic plant condition monitoring using thermal images analysis by convolutional aerial network-based structure. Renew. Energy 2020, 153, 334–348. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, S.; Panda, R.; Mishro, P.K.; Abraham, A. A novel joint histogram equalization-based image contrast enhancement. J. King Saud Univ.—Comput. Inf. Sci. 2019, 1–11. [Google Scholar] [CrossRef]
- Kerm, P.V. Kernel-smoothed cumulative distribution function estimation with akdensity. Stata J. 2012, 12, 543–548. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.; Jin, H.; Leung, V. CDF-based scheduling algorithm for proportional throughput fairness. IEEE Commun. Lett. 2016, 20, 1034–1037. [Google Scholar] [CrossRef]
- Nguyen, R.; Brown, M. Raw image reconstruction using a self-contained sRGB-JPEG image with small memory overhead. Int. J. Comput. Vis. 2017, 126, 637–650. [Google Scholar] [CrossRef] [Green Version]
- Perret, B.; Lefevre, S.; Collet, C.; Sezak, E. Hyperconnections and hierarchical representations for grayscale and multiband image processing. IEEE Trans. Image Process. 2012, 21, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Karimi, A.M.; Fada, J.S.; Hossain, M.A.; Yag, S.; Peshek, T.; Braid, J.; French, R. Automated pipeline for photovoltaic module electroluminescence image processing and degradation feature classification. IEEE J. Photovolt. 2019, 9, 1324–1335. [Google Scholar] [CrossRef]
- Zhuang, L.; Guan, Y. Image enhancement using modified histogram and log-exp transformation. Symmetry 2019, 11, 1062. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Wen, X.; Wang, S.; Wang, L. A real-time detection method of building energy efficiency based on image processing. J. Vis. Commun. Image Represent. 2019, 60, 295–304. [Google Scholar] [CrossRef]
- Tan, S.F.; Mat Isa, N.A. Exposure based multi-histogram equalization contrast enhancement for non-uniform illumination. IEEE Access 2019, 7, 70842–70861. [Google Scholar] [CrossRef]
- Cheng, H.D.; Shi, X.J. A simple and effective histogram equalization approach to image enhancement. Digit. Signal Process. 2004, 14, 158–170. [Google Scholar] [CrossRef]
- Chang, Y.; Jung, C.; Song, H.; Hwang, J. Automatic contrast-limited adaptive histogram equalization with dual gamma correction. IEEE Access 2017, 6, 11782–11792. [Google Scholar] [CrossRef]
- Liu, C.; Sui, X.; Kuang, X.; Liu, Y.; Gu, G.; Chen, Q. Adaptive contrast enhancement for infrared images based on the neighborhood conditional histogram. Remote Sens. 2019, 11, 1381. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Yuvaraj, N.; Sri Preethaa, K.R.; Santhosh, R.; Sabari, A. Enhanced pedestrian detection using optimized deep convolution neural network for smart building surveillance. Soft Comput. 2020, 24, 17081–17092. [Google Scholar] [CrossRef]
- Kim, B.; Yuvarak, N.; Sri Preethaa, K.R.; Arun Pandian, R. Surface crack dtection using deep learning with shallow CNN architecture for enhanced computation. Neural Comput. Appl. 2021, 33, 9289–9305. [Google Scholar] [CrossRef]
- Kingma, D.; Lei, B.J. Adam: A method for Stochastic Optimization. In Proceedings of the on the 3rd International Conference for Learning Representations, San Diego, CA, USA, 22 December 2014; pp. 1–15. [Google Scholar]
- Hahnloser, R.; Sarpeshkar, R.; Mahowald, M.; Douglas, R.; Sebastian, S. Digital selection and analogue amaplification coexists in a cortex-inspired silicon circuit. Nature 2000, 405, 947–951. [Google Scholar] [CrossRef]
- Reis Benato, A.; Mantel, C.; Spatar, S.; Lancia, A.; Riedel, N.; Thrsteinsson, S.; Poulsen, P.; Parikh, H.; Forchhammer, S.; Sera, D. Drone-based daylight electroluminescence imaging of PV modules. IEEE J. Photovolt. 2020, 10, 872–877. [Google Scholar] [CrossRef]
- Sovetkin, E.; Steland, A. Automatic processing and solar cell detection in photovoltaic electroluminescence images. Integr. Comput.-Aided Eng. 2019, 26, 123–137. [Google Scholar] [CrossRef] [Green Version]
Brand/Company Name | FLIR E8 |
---|---|
Field of view (FOV) | 45° × 34° |
Object temperature range | −20 to 250 °C |
Image frequency | 9 Hz |
Thermal sensitivity | <0.06 °C |
Accuracy | ± 2 °C |
Thermal palettes | Iron, Rainbow, Greyscale |
File format | Radiometric JPG |
On-board digital camera | 640 × 480 |
PV Module Brand/Company Name | LUMOS SOLAR (LLC) |
---|---|
Cell technology | Monocrystalline |
Maximum power (PMAX) | 270 W |
Short-circuit current (ISC) | 9.74 A |
Open-circuit voltage (VOC) | 27.78 V |
Current of maximum power (IPMAX) | 9.08 A |
Voltage of maximum power (VPMAX) | 33.08 V |
Module area (Size) | 1645 by 983 by 42 (mm3) |
Attribute | Value |
---|---|
Width (columns) | 400 |
Height (rows) | 400 |
Class | uint16 |
Image type | False color |
Dataset | Histogram Equalization | Adaptive Histogram Equalization |
---|---|---|
Training | 1890 | 1890 |
Testing | 810 | 810 |
Total | 2700 | 2700 |
Hyper-Parameters | CNN | CNN-SVM |
---|---|---|
Batch size | 128 | 128 |
Dropout rate | 0.5 | 0.5 |
Learning rate | 1 × 10−3 | 1 ×10−3 |
Steps | 10,000 | 10,000 |
SVMC | N/A | 1 |
Training Set | Testing Set | ||||||
---|---|---|---|---|---|---|---|
Dataset | Classifier Method | Percent Sensitivity | Percent Specificity | Percent Accuracy | Percent Sensitivity | Percent Specificity | Percent Accuracy |
HE | CNN | 94.86% | 91.23% | 90.25 | 90.43% | 87.16% | 88% |
CNN-SVM | 96.72% | 93.96% | 94.16% | 93.83% | 88.43% | 90.16% | |
AHE | CNN | 99% | 93.96% | 92.96% | 92.25% | 89% | 90% |
CNN-SVM | 100% | 94.3% | 97% | 95.55% | 90.65% | 92.96% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.; Serfa Juan, R.O.; Lee, D.-E.; Chen, Z. Importance of Image Enhancement and CDF for Fault Assessment of Photovoltaic Module Using IR Thermal Image. Appl. Sci. 2021, 11, 8388. https://doi.org/10.3390/app11188388
Kim B, Serfa Juan RO, Lee D-E, Chen Z. Importance of Image Enhancement and CDF for Fault Assessment of Photovoltaic Module Using IR Thermal Image. Applied Sciences. 2021; 11(18):8388. https://doi.org/10.3390/app11188388
Chicago/Turabian StyleKim, Bubryur, Ronnie O. Serfa Juan, Dong-Eun Lee, and Zengshun Chen. 2021. "Importance of Image Enhancement and CDF for Fault Assessment of Photovoltaic Module Using IR Thermal Image" Applied Sciences 11, no. 18: 8388. https://doi.org/10.3390/app11188388