Protective Effects of Betaine on Boar Sperm Quality during Liquid Storage and Transport
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Semen Collection and Processing
2.2. Experimental Design
2.3. Sperm Motility Analysis
2.4. Evaluation of Mitochondrial Membrane Potential (ΔΨm)
2.5. Evaluation of Acrosomal Integrity
2.6. Measurement of Antioxidant Capacity
2.7. Lipid Peroxidation Level Detection
2.8. Statistical Analysis
3. Results
3.1. Effects of Betaine Supplementation on Boar Sperm Motility Stored at Room Temperature (17 °C)
3.2. Effects of Betaine Supplementation on Boar Sperm Quality during Semen Transportation
3.3. Effects of Betaine Supplementation on Boar Sperm Quality during Simulated Temperature Fluctuations
3.4. Effects of Betaine Supplementation on Boar Sperm Quality during Simulated Transportation Bumps
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schulze, M.; Ammon, C.; Schaefer, J.; Luther, A.M.; Jung, M.; Waberski, D. Impact of different dilution techniques on boar sperm quality and sperm distribution of the extended ejaculate. Anim. Reprod Sci. 2017, 182, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, C.M.; Forell, F.; Oliveira, A.T.; Rodrigues, J.L. Current status of sperm cryopreservation: Why isn’t it better? Theriogenology 2002, 57, 327–344. [Google Scholar] [CrossRef]
- Leahy, T.; Gadella, B.M. Capacitation and capacitation-like sperm surface changes induced by handling boar semen. Reprod Domest. Anim. 2011, 46 (Suppl. S2), 7–13. [Google Scholar] [CrossRef] [PubMed]
- Yeste, M. Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology 2016, 85, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Yánez-Ortiz, I.; Catalán, J.; Rodríguez-Gil, J.E.; Miró, J.; Yeste, M. Advances in sperm cryopreservation in farm animals: Cattle, horse, pig and sheep. Anim. Reprod Sci. 2022, 246, 106904. [Google Scholar] [CrossRef]
- Knox, R.V. Artificial insemination in pigs today. Theriogenology 2016, 85, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.A.; Weitze, K.F.; Fiser, P.; Maxwell, W.M. Storage of boar semen. Anim. Reprod Sci. 2000, 62, 143–172. [Google Scholar] [CrossRef]
- Schulze, M.; Henning, H.; Rüdiger, K.; Wallner, U.; Waberski, D. Temperature management during semen processing: Impact on boar sperm quality under laboratory and field conditions. Theriogenology 2013, 80, 990–998. [Google Scholar] [CrossRef]
- López Rodríguez, A.; Rijsselaere, T.; Vyt, P.; Van Soom, A.; Maes, D. Effect of dilution temperature on boar semen quality. Reprod Domest. Anim. 2012, 47, e63–e66. [Google Scholar] [CrossRef]
- Vyt, P.; Maes, D.; Sys, S.U.; Rijsselaere, T.; Van Soom, A. Air contact influences the pH of extended porcine semen. Reprod Domest Anim. 2007, 42, 218–220. [Google Scholar] [CrossRef]
- Paschoal, A.F.; Luther, A.M.; Jakop, U.; Schulze, M.; Bortolozzo, F.P.; Waberski, D. Factors influencing the response of spermatozoa to agitation stress: Implications for transport of extended boar semen. Theriogenology 2021, 175, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Tamanini, M.S.C.; Dos Santos, G.; Leal, L.A.; Wolf, L.M.; Schulze, M.; Christ, T.S.; Bortolozzo, F.P.; Ulguim, R.R.; Wentz, I.; Mellagi, A.P.G. Impact of agitation time of boar semen doses on sperm traits in short- and long-term extenders. Anim. Reprod Sci. 2022, 247, 107159. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Bortfeldt, R.; Schäfer, J.; Jung, M.; Fuchs-Kittowski, F. Effect of vibration emissions during shipping of artificial insemination doses on boar semen quality. Anim. Reprod Sci. 2018, 192, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Peng, L.; Xu, J.; Guo, D.; Cao, W.; Xu, Y.; Li, S. Betaine attenuate chronic restraint stress-induced changes in testicular damage and oxidative stress in male mice. Reprod Biol. Endocrinol. 2022, 20, 80. [Google Scholar] [CrossRef] [PubMed]
- Mori, N.; Ishihara, M.; Tasaki, H.; Sankai, T.; Otsuki, J. The effect of betaine for mouse sperm cryopreservation. Cryobiology 2022, 106, 157–159. [Google Scholar] [CrossRef]
- Zhang, B.R.; Buhr, M.; Kroetschd, T.; Leibo, S.P. Glycine betaine improves survival of fresh bovine spermatozoa. Reprod Fertil Dev. 2001, 13, 187–192. [Google Scholar] [CrossRef]
- Attia, Y.A.; El-Naggar, A.S.; Abou-Shehema, B.M.; Abdella, A.A. Effect of supplementation with trimethylglycine (betaine) and/or Vitamins on semen quality, fertility, antioxidant status, DNA repair and welfare of roosters exposed to chronic heat stress. Animals 2019, 9, 547. [Google Scholar] [CrossRef]
- Lugar, D.W.; Krom, W.A.; Mings, P.D.; Stewart, K.R. Effects of supplemental betaine to semen extenders on semen quality in boars. Transl. Anim. Sci. 2018, 2, 195–204. [Google Scholar] [CrossRef]
- Chen, G.; Ren, L.; Chang, Z.; Zhao, Y.; Zhang, Y.; Xia, D.; Zhao, R.; He, B. Lysine acetylation participates in boar spermatozoa motility and acrosome status regulation under different glucose conditions. Theriogenology 2021, 159, 140–146. [Google Scholar] [CrossRef]
- Hafemeister, T.; Schulze, P.; Bortfeldt, R.; Simmet, C.; Jung, M.; Fuchs-Kittowski, F.; Schulze, M. Boar semen shipping for artificial insemination: Current status and analysis of transport conditions with a major focus on vibration emissions. Animals 2022, 12, 1331. [Google Scholar] [CrossRef]
- Rodriguez, A.L.; Rijsselaere, T.; Bijttebier, J.; Vyt, P.; Van Soom, A.; Maes, D. Effectiveness of the sperm quality analyzer (SQA-Vp) for porcine semen analysis. Theriogenology 2011, 75, 972–977. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.A.; Spidlen, J.; Boyce, K.; Cai, J.; Crosbie, N.; Dalphin, M.; Furlong, J.; Gasparetto, M.; Goldberg, M.; Goralczyk, E.M.; et al. MIFlowCyt: The minimum information about a Flow Cytometry Experiment. Cytometry A 2008, 73, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Chang, Z.; Zhang, Z.; Zhao, Y.; Jiang, X.; Yu, H.; Zhang, Y.; Zhao, R.; He, B. Extracellular ATPs produced in seminal plasma exosomes regulate boar sperm motility and mitochondrial metabolism. Theriogenology 2019, 139, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, J.; Wang, S.; Ju, H.; Chen, S.; Basioura, A.; Ferreira-Dias, G.; Liu, Z.; Zhu, J. Post-thaw storage temperature influenced boar sperm quality and lifespan through apoptosis and lipid peroxidation. Animals 2024, 14, 87. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Zhao, Y.; Ren, L.; Li, C.; Cai, J.; He, B. Methionine improves boar sperm quality by promoting mitochondrial translation during liquid Storage. Animals 2024, 14, 2227. [Google Scholar] [CrossRef] [PubMed]
- Kidd, M.T.; Ferket, P.R.; Garlich, J.D. Nutritional and osmoregulatory functions of betaine. World’s Poult. Sci. J. 1997, 53, 125–139. [Google Scholar] [CrossRef]
- Peña, A.I.; Barrio, F.; Quintela, L.A.; Herradón, P.G. Effect of different glycerol treatments on frozen-thawed dog sperm longevity and acrosomal integrity. Theriogenology 1998, 50, 163–174. [Google Scholar] [CrossRef]
- Trimeche, A.; Yvon, J.M.; Vidament, M.; Palmer, E.; Magistrini, M. Effects of glutamine, proline, histidine and betaine on post-thaw motility of stallion spermatozoa. Theriogenology 1999, 52, 181–191. [Google Scholar] [CrossRef]
- Li, J.; Zhao, W.; Zhu, J.; Ju, H.; Liang, M.; Wang, S.; Chen, S.; Ferreira-Dias, G.; Liu, Z. Antioxidants and oxidants in boar spermatozoa and their surrounding environment are associated with AMPK activation during liquid storage. Vet. Sci. 2023, 10, 214. [Google Scholar] [CrossRef]
- Simonik, O.; Bubenickova, F.; Tumova, L.; Frolikova, M.; Sur, V.P.; Beran, J.; Havlikova, K.; Hackerova, L.; Spevakova, D.; Komrskova, K.; et al. Boar sperm cryopreservation improvement using semen extender modification by dextran and pentaisomaltose. Animals 2022, 12, 868. [Google Scholar] [CrossRef]
- Guo, H.; Gong, Y.; He, B.; Zhao, R. Relationships between mitochondrial DNA content, mitochondrial activity, and boar sperm motility. Theriogenology 2017, 87, 276–283. [Google Scholar] [CrossRef] [PubMed]
- De Jager, C.; Bornman, M.S.; Aneck-Hahn, N.H.; du Toit, D.; Viljoen, E. Effect of rotation on the generation of reactive oxygen species in human semen. Andrologia 1996, 28, 291–293. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, D.; Zhang, W.; Tian, X.; Pang, W.; Du, R.; Yang, G.; Yu, T. Boar sperm quality and oxidative status as affected by rosmarinic acid at 17 °C. Trop. Anim. Health Prod. 2020, 52, 2169–2177. [Google Scholar] [CrossRef] [PubMed]
- Ueland, P.M. Choline and betaine in health and disease. J. Inherit. Metab. Dis. 2011, 34, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Nesci, S.; Spinaci, M.; Galeati, G.; Nerozzi, C.; Pagliarani, A.; Algieri, C.; Tamanini, C.; Bucci, D. Sperm function and mitochondrial activity: An insight on boar sperm metabolism. Theriogenology 2020, 144, 82–88. [Google Scholar] [CrossRef]
- Althouse, G.C.; Wilson, M.E.; Kuster, C.; Parsley, M. Characterization of lower temperature storage limitations of fresh-extended porcine semen. Theriogenology 1998, 50, 535–543. [Google Scholar] [CrossRef]
- Hua, J.; Erickson, L.E.; Yiin, T.Y.; Glasgow, L.A. A review of the effects of shear and interfacial phenomena on cell viability. Crit. Rev. Biotechnol. 1993, 13, 305–328. [Google Scholar] [CrossRef]
Composition | Added Amount |
---|---|
D-glucose (g/L) | 27.56 |
Trisodium citrate (g/L) | 7.85 |
EDTA-2Na (g/L) | 2.12 |
Sodium bicarbonate (g/L) | 1 |
Tris (g/L) | 5.56 |
Citric acid (g/L) | 2.9 |
Penicillin-Streptomycin solution (100×) | 10 |
Storage Time | Sperm Motility (%) | Betaine Supplementation (mg/mL) | |||
---|---|---|---|---|---|
0 | 0.5 | 2.5 | 12.5 | ||
Day 0 | Total motility | 94.76 ± 0.93 | |||
Progressive motility | 89.11 ± 1.94 | ||||
Day 1 | Total motility | 89.43 ± 2.34 a | 91.23 ± 1.41 a | 88.49 ± 1.71 a | 38.61 ± 4.21 b |
Progressive motility | 80.81 ± 3.99 a | 83.18 ± 2.76 a | 79.73 ± 2.86 a | 20.24 ± 3.03 b | |
Day 3 | Total motility | 86.86 ± 1.41 b | 90.49 ± 1.5 a | 90.11 ± 1.56 a | 30.64 ± 3.56 c |
Progressive motility | 77.13 ± 2.44 b | 81.23 ± 3.03 a | 81.18 ± 2.62 a | 13.69 ± 2.86 c | |
Day 5 | Total motility | 84.03 ± 2.34 b | 87.78 ± 1.39 a | 85.3 ± 0.78 ab | 25.44 ± 2.98 c |
Progressive motility | 73.09 ± 3.1 b | 78.49 ± 1.79 a | 74.62 ± 1.12 b | 9.4 ± 2.15 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Liu, C.; Chen, Y.; Zhao, Y.; Tan, M.; He, B. Protective Effects of Betaine on Boar Sperm Quality during Liquid Storage and Transport. Animals 2024, 14, 2711. https://doi.org/10.3390/ani14182711
Li C, Liu C, Chen Y, Zhao Y, Tan M, He B. Protective Effects of Betaine on Boar Sperm Quality during Liquid Storage and Transport. Animals. 2024; 14(18):2711. https://doi.org/10.3390/ani14182711
Chicago/Turabian StyleLi, Chenxuan, Chenxi Liu, Yingqi Chen, Yuting Zhao, Meiling Tan, and Bin He. 2024. "Protective Effects of Betaine on Boar Sperm Quality during Liquid Storage and Transport" Animals 14, no. 18: 2711. https://doi.org/10.3390/ani14182711