Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.)
Abstract
:1. Introduction
- (1)
- The NDCSI index was used to perform threshold-based removal of shadow noise and soil background in UAV imagery.
- (2)
- UAV remote sensing imagery data were collected, and LNC data were measured. Eleven typical VIs were constructed. The correlation coefficients between spectral features, texture features, and LNC were initially screened using Pearson correlation, and sensitive features were further selected through RF modeling.
- (3)
- To further improve the inversion quality of LNC, a Lasso-Stacking model with a feature selection function was constructed for nitrogen content monitoring in custard apple.
2. Materials and Methods
2.1. Study Area
2.2. UAV Imagery Acquisition and Preprocessing
2.3. UAV Imagery Shadow Removal
2.4. Information from the Ground Gathering and Measuring the Nitrogen Level in Custard Apple Leaves
2.5. Extraction of Vegetation Indices from Multispectral Imagery
2.6. Multispectral Image Texture Features
2.7. Development of the Stacking Ensemble Learning Method for Calculating LNC of Custard Apple Leaf
2.8. Techniques for Ensemble Learning
3. Results and Analysis
3.1. Correlation Analysis of Multispectral Spectral Features and Nitrogen Content
3.2. Nitrogen Content and Band Texture Features Correlation Analysis
3.3. Remote Sensing Modeling and Estimation of the Custard Apple Tree LNC
3.3.1. Selection of Input Feature Variables
3.3.2. Inversion Modeling Using Ensemble Learning
3.3.3. Using Ensemble Learning for UAV-Based Nitrogen Content Estimation in Custard Apple Leaves
4. Discussion
- Integration of Multi-source Data: We plan to integrate UAV remote sensing data with hyperspectral satellite data and ground sensor data to construct a more comprehensive multi-source data fusion framework. This will enhance the model’s universality and its effectiveness in large-scale applications.
- Expansion of Spatiotemporal Data: The next step is to further integrate multi-year remote sensing data and multi-location monitoring data to address the challenges of nitrogen content monitoring under varying climatic conditions and crop cultivation patterns, thereby improving the model’s generalization capability.
- Model Optimization and Generalization: We will explore more machine learning models (e.g., deep learning methods, ensemble learning) and investigate additional regularization techniques to tackle overfitting, aiming to further enhance the model’s stability and prediction accuracy.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moussa, A.Y.; Siddiqui, S.A.; Elhawary, E.A.; Guo, K.; Anwar, S.; Xu, B. Phytochemical constituents, bioactivities, and applications of custard apple (Annona squamosa L.): A narrative review. Food Chem. 2024, 459, 140363. [Google Scholar] [CrossRef]
- Sun, G.Z.; Chen, S.H.; Zhang, S.W.; Chen, S.M.; Liu, J.; He, Q.; Hu, T.T.; Zhang, F.C. Responses of leaf nitrogen status and leaf area index to water and nitrogen application and their relationship with apple orchard productivity. Agric. Water Manag. 2024, 296, 14. [Google Scholar] [CrossRef]
- Jiang, H.; Jiang, L.; He, L.; Murengami, B.G.; Jing, X.; Misiewicz, P.A.; Cheein, F.A.; Fu, L. Yield prediction of root crops in field using remote sensing: A comprehensive review. Comput. Electron. Agric. 2024, 227, 109600. [Google Scholar] [CrossRef]
- Gao, X.; Yao, Y.; Chen, S.; Li, Q.; Zhang, X.; Liu, Z.; Zeng, Y.; Ma, Y.; Zhao, Y.; Li, S. Improved maize leaf area index inversion combining plant height corrected resampling size and random forest model using UAV images at fine scale. Eur. J. Agron. 2024, 161, 127360. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhang, S.; Chen, X.; Cui, H.; Xu, Y.; Xia, S.; Xia, K.; Zhou, T.; Zhou, X. Inversion of reclaimed soil water content based on a combination of multi-attributes of ground penetrating radar signals. J. Appl. Geophys. 2023, 213, 105019. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Wu, W.; Zhu, Y.; Yang, G.; Yang, X.; Meng, Y.; Jiang, X.; Xue, H. Hyperspectral Estimation of Chlorophyll Content in Grape Leaves Based on Fractional-Order Differentiation and Random Forest Algorithm. Remote Sens. 2024, 16, 2174. [Google Scholar] [CrossRef]
- Wang, K.; Shan, S.; Dou, W.; Wei, H.; Zhang, K. A cross-modal deep learning method for enhancing photovoltaic power forecasting with satellite imagery and time series data. Energy Convers. Manag. 2025, 323, 119218. [Google Scholar] [CrossRef]
- Dong, H.; Dong, J.; Sun, S.; Bai, T.; Zhao, D.; Yin, Y.; Shen, X.; Wang, Y.; Zhang, Z.; Wang, Y. Crop water stress detection based on UAV remote sensing systems. Agric. Water Manag. 2024, 303, 109059. [Google Scholar] [CrossRef]
- Wu, G.; Al-qaness, M.A.A.; Al-Alimi, D.; Dahou, A.; Abd Elaziz, M.; Ewees, A.A. Hyperspectral image classification using graph convolutional network: A comprehensive review. Expert Syst. Appl. 2024, 257, 125106. [Google Scholar] [CrossRef]
- Flynn, K.C.; Witt, T.W.; Baath, G.S.; Chinmayi, H.K.; Smith, D.R.; Gowda, P.H.; Ashworth, A.J. Hyperspectral reflectance and machine learning for multi-site monitoring of cotton growth. Smart Agric. Technol. 2024, 9, 100536. [Google Scholar] [CrossRef]
- Segarra, J.; Rezzouk, F.Z.; Aparicio, N.; González-Torralba, J.; Aranjuelo, I.; Gracia-Romero, A.; Araus, J.L.; Kefauver, S.C. Multiscale assessment of ground, aerial and satellite spectral data for monitoring wheat grain nitrogen content. Inf. Process. Agric. 2023, 10, 504–522. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Z.; Yang, G.; Xu, B.; Feng, H.; Chen, R.; Qi, N.; Zhang, W.; Zhao, D.; Cheng, J.; et al. Removal of canopy shadows improved retrieval accuracy of individual apple tree crowns LAI and chlorophyll content using UAV multispectral imagery and PROSAIL model. Comput. Electron. Agric. 2024, 221, 108959. [Google Scholar] [CrossRef]
- Almeida-Ñauñay, A.F.; Tarquis, A.M.; López-Herrera, J.; Pérez-Martín, E.; Pancorbo, J.L.; Raya-Sereno, M.D.; Quemada, M. Optimization of soil background removal to improve the prediction of wheat traits with UAV imagery. Comput. Electron. Agric. 2023, 205, 107559. [Google Scholar] [CrossRef]
- Liu, S.; Jin, X.; Bai, Y.; Wu, W.; Cui, N.; Cheng, M.; Liu, Y.; Meng, L.; Jia, X.; Nie, C.; et al. UAV multispectral images for accurate estimation of the maize LAI considering the effect of soil background. Int. J. Appl. Earth Obs. Geoinf. 2023, 121, 103383. [Google Scholar] [CrossRef]
- Xu, Z.-H.; Lin, L.; Wang, Q.-F.; Huang, X.-Y.; Liu, J.; Yu, K.-Y.; Chen, C.-C. Construction and application effects of normalized shaded vegetation index (NSVI). J. Infrared Millim. Waves 2018, 37, 154–162. [Google Scholar]
- Lu, J.; Cheng, D.; Geng, C.; Zhang, Z.; Xiang, Y.; Hu, T. Combining plant height, canopy coverage and vegetation index from UAV-based RGB images to estimate leaf nitrogen concentration of summer maize. Biosyst. Eng. 2021, 202, 42–54. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, M. Classification methods for hyperspectral remote sensing images with weak texture features. J. Radiat. Res. Appl. Sci. 2024, 17, 101019. [Google Scholar] [CrossRef]
- Zhang, S.; Duan, J.; Qi, X.; Gao, Y.; He, L.; Liu, L.; Guo, T.; Feng, W. Combining spectrum, thermal, and texture features using machine learning algorithms for wheat nitrogen nutrient index estimation and model transferability analysis. Comput. Electron. Agric. 2024, 222, 109022. [Google Scholar] [CrossRef]
- Zhuang, Z.-H.; Tsai, H.P.; Chen, C.-I.; Yang, M.-D. Subtropical region tea tree LAI estimation integrating vegetation indices and texture features derived from UAV multispectral images. Smart Agric. Technol. 2024, 9, 100650. [Google Scholar] [CrossRef]
- Wang, D.; Li, R.; Liu, T.; Liu, S.; Sun, C.; Guo, W. Combining vegetation, color, and texture indices with hyperspectral parameters using machine-learning methods to estimate nitrogen concentration in rice stems and leaves. Field Crops Res. 2023, 304, 109175. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, G.; Pu, R.; Li, Z.; Li, H.; Xu, X.; Song, X.; Yang, X.; Zhao, C. An overview of crop nitrogen status assessment using hyperspectral remote sensing: Current status and perspectives. Eur. J. Agron. 2021, 124, 126241. [Google Scholar] [CrossRef]
- Bossung, C.; Schlerf, M.; Machwitz, M. Estimation of canopy nitrogen content in winter wheat from Sentinel-2 images for operational agricultural monitoring. Precis. Agric. 2022, 23, 2229–2252. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, H.; Wang, P. Quantitative modelling for leaf nitrogen content of winter wheat using UAV-based hyperspectral data. Int. J. Remote Sens. 2017, 38, 2117–2134. [Google Scholar] [CrossRef]
- Jia, F.; Liu, G.; Liu, D.; Zhang, Y.; Fan, W.; Xing, X. Comparison of different methods for estimating nitrogen concentration in flue-cured tobacco leaves based on hyperspectral reflectance. Field Crops Res. 2013, 150, 108–114. [Google Scholar] [CrossRef]
- Cao, C.; Wang, T.; Gao, M.; Li, Y.; Li, D.; Zhang, H. Hyperspectral inversion of nitrogen content in maize leaves based on different dimensionality reduction algorithms. Comput. Electron. Agric. 2021, 190, 106461. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, T.E.; Gu, X.; Kuai, Y.; Wang, C.; Chen, D.; Zhao, C. UAV-borne hyperspectral estimation of nitrogen content in tobacco leaves based on ensemble learning methods. Comput. Electron. Agric. 2023, 211, 108008. [Google Scholar] [CrossRef]
- Li, B.; Xu, X.; Zhang, L.; Han, J.; Bian, C.; Li, G.; Liu, J.; Jin, L. Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS J. Photogramm. Remote Sens. 2020, 162, 161–172. [Google Scholar] [CrossRef]
- Du, R.; Lu, J.; Xiang, Y.; Zhang, F.; Chen, J.; Tang, Z.; Shi, H.; Wang, X.; Li, W. Estimation of winter canola growth parameter from UAV multi-angular spectral-texture information using stacking-based ensemble learning model. Comput. Electron. Agric. 2024, 222, 109074. [Google Scholar] [CrossRef]
- Liang, M.; Chang, T.; An, B.; Duan, X.; Du, L.; Wang, X.; Miao, J.; Xu, L.; Gao, X.; Zhang, L.; et al. A Stacking Ensemble Learning Framework for Genomic Prediction. Front. Genet. 2021, 12, 600040. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Xiao, L.; Han, D.; Yue, W. A prediction model for water absorption in sublayers based on stacking ensemble learning method. Geoenergy Sci. Eng. 2024, 240, 212988. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Petruseva, S.; Zileska Pancovska, V.; Žujo, V.; Brkan-Vejzović, A. Construction costs forecasting: Comparison of the accuracy of linear regression and support vector machine models. Tech. Gaz. 2017, 24, 1431–1438. [Google Scholar] [CrossRef]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef]
- Zhu, H.; Huang, Y.; An, Z.; Zhang, H.; Han, Y.; Zhao, Z.; Li, F.; Zhang, C.; Hou, C. Assessing radiometric calibration methods for multispectral UAV imagery and the influence of illumination, flight altitude and flight time on reflectance, vegetation index and inversion of winter wheat AGB and LAI. Comput. Electron. Agric. 2024, 219, 108821. [Google Scholar] [CrossRef]
- Xu, N.; Tian, J.; Tian, Q.; Xu, K.; Tang, S. Analysis of Vegetation Red Edge with Different Illuminated/Shaded Canopy Proportions and to Construct Normalized Difference Canopy Shadow Index. Remote Sens. 2019, 11, 1192. [Google Scholar] [CrossRef]
- Shengxian, L.X.X.T.D. Estimation of Citrus Canopy Chlorophyll Based on UAV Multispectral Images. Trans. Chin. Soc. Agric. Mach. 2023, 54, 198–205. [Google Scholar]
- Marin, D.B.; Ferraz, G.A.e.S.; Santana, L.S.; Barbosa, B.D.S.; Barata, R.A.P.; Osco, L.P.; Ramos, A.P.M.; Guimarães, P.H.S. Detecting coffee leaf rust with UAV-based vegetation indices and decision tree machine learning models. Comput. Electron. Agric. 2021, 190, 106476. [Google Scholar] [CrossRef]
- Erdle, K.; Mistele, B.; Schmidhalter, U. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Res. 2011, 124, 74–84. [Google Scholar] [CrossRef]
- Ahmad, F. Detection of Change in Vegetation Cover Using Multi-Spectral and Multi-Temporal Information for District Sargodha. Glob. J. Hum. -Soc. Sci. Res. 2012, 24, 557–571. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor]. 1973. Available online: https://ntrs.nasa.gov/citations/19750020419 (accessed on 27 January 1973).
- Gitelson, A.A. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Meijer, A.D. Aerial Color Infrared Photography for Determining Early In-Season Nitrogen Requirements in Corn. Agron. J. 2006, 98, 968–977. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, X.; Tian, Y.; Liu, X.; Cao, W. Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 1–10. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Wang, H.; Huang, S.; Cheng, S.; Khosla, R.; Jiang, R. Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor. Field Crops Res. 2013, 154, 133–144. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices. ISPRS J. Photogramm. Remote Sens. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Yan, Z.; Yao, Y. Variable selection method for fault isolation using least absolute shrinkage and selection operator (LASSO). Chemom. Intell. Lab. Syst. 2015, 146, 136–146. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, W.; Zhou, J.; Dai, M.; Sun, Q.; Sun, X.; Chen, Z.; Gu, X. A spectral index for estimating grain filling rate of winter wheat using UAV-based hyperspectral images. Comput. Electron. Agric. 2024, 223, 109059. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Wu, W.; Zhu, Y.; Yang, G.; Gao, L.; Meng, Y.; Jiang, X.; Xue, H. Hyperspectral Estimation of Leaf Nitrogen Content in White Radish Based on Feature Selection and Integrated Learning. Remote Sens. 2024, 16, 4479. [Google Scholar] [CrossRef]
- Xu, X.; Fan, L.; Li, Z.; Meng, Y.; Feng, H.; Yang, H.; Xu, B. Estimating Leaf Nitrogen Content in Corn Based on Information Fusion of Multiple-Sensor Imagery from UAV. Remote Sens. 2021, 13, 340. [Google Scholar] [CrossRef]
- Chen, H.; Chen, H.; Zhang, S.; Chen, S.; Cen, F.; Zhao, Q.; Huang, X.; He, T.; Gao, Z. Comparison of CWSI and Ts-Ta-VIs in moisture monitoring of dryland crops (sorghum and maize) based on UAV remote sensing. J. Integr. Agric. 2024, 23, 2458–2475. [Google Scholar] [CrossRef]
- Hosseini, F.; Prieto, C.; Álvarez, C. Ensemble learning of catchment-wise optimized LSTMs enhances regional rainfall-runoff modelling—Case Study: Basque Country, Spain. J. Hydrol. 2025, 646, 132269. [Google Scholar] [CrossRef]
- Hao, X.; Chen, Z.; Yi, S.; Liu, J. Application of improved Stacking ensemble learning in NIR spectral modeling of corn seed germination rate. Chemom. Intell. Lab. Syst. 2023, 243, 105020. [Google Scholar] [CrossRef]
- Lakshmi, M.V.; Winkler, J.R. Numerical properties of solutions of LASSO regression. Appl. Numer. Math. 2024, 208, 297–309. [Google Scholar] [CrossRef]
- Wang, R.; Dijkstra, F.A.; Liu, H.; Yin, J.; Wang, X.; Feng, X.; Xu, Z.; Jiang, Y. Response of soil carbon to nitrogen and water addition differs between labile and recalcitrant fractions: Evidence from multi–year data and different soil depths in a semi-arid steppe. Catena 2019, 172, 857–865. [Google Scholar] [CrossRef]
Waveband Band | Central Wavelength (nm) | Spectral Bandwidth (nm) |
---|---|---|
G | 560 nm + 16 nm | 40 nm |
R | 650 nm + 16 nm | 40 nm |
RE | 730 nm + 16 nm | 20 nm |
NIR | 860 nm + 26 nm | 30 nm |
Sample | Latitude | Longitude |
---|---|---|
Sample 1 | 25.72087188 | 101.7975859 |
Sample 2 | 25.7208494 | 101.7974183 |
Sample 3 | 25.72138112 | 101.7974339 |
Sample 4 | 25.72137894 | 101.7977156 |
Sample 5 | 25.7212916 | 101.7974944 |
Sample 6 | 25.72169407 | 101.7970533 |
Sample 7 | 25.72078584 | 101.7969467 |
Sample 8 | 25.72124224 | 101.79706 |
Sample 9 | 25.72170824 | 101.7968015 |
Sample 10 | 25.72144288 | 101.7967326 |
Sample 11 | 25.72205578 | 101.7978633 |
Sample 12 | 25.72232165 | 101.7979453 |
Sample 13 | 25.7225071 | 101.7979962 |
Sample 14 | 25.722647 | 101.7978964 |
Sample 15 | 25.7223012 | 101.7978186 |
Sample 16 | 25.72183514 | 101.7986564 |
Sample 17 | 25.7219216 | 101.7983524 |
Sample 18 | 25.72219541 | 101.7983899 |
Sample 19 | 25.72257355 | 101.7984414 |
Sample 20 | 25.72248967 | 101.7986328 |
Sample 21 | 25.72218713 | 101.7985957 |
Sample 22 | 25.7215716 | 101.7990846 |
Sample 23 | 25.72172485 | 101.7989925 |
Sample 24 | 25.72230296 | 101.7989335 |
Sample 25 | 25.72242464 | 101.7991441 |
Sample 26 | 25.72145072 | 101.7982732 |
Sample 27 | 25.72123758 | 101.7981791 |
Sample 28 | 25.72109625 | 101.7980155 |
Sample 29 | 25.72087188 | 101.7975859 |
Vegetation Index (VI) | Formula | References |
---|---|---|
Modified Normalized Difference Red Edge (MNDRE) | MNDRE = (NIR − RE + 2 × R)/(NIR + RE−2 × R) | [41] |
Normalized Red Index (NRI) | NRI = R/(NIR + R + RE) | [41] |
Red Edge Simple Ratio (RESR) | RESR = RE/R | [42] |
Transformed Normalized Vegetation Index (TNDVI) | TNDVI = sqrt((NIR − R)/(NIR + R) + 0.5) | [43] |
Normalized Difference Vegetation Index (NDVI) | NDVI = (NIR − R)/(NIR + R) | [44] |
Wide Dynamic Range Vegetation Index (WDRVI) | WDRVI = (0.12 × NIR − R)/(0.12 × NIR + R) | [45] |
Normalized Green Index (NGI) | NGI = G/(NIR + G + RE) | [46] |
Modified Simple Ratio (MSR) | MSR = (NIR/R − 1)/sqrt (NIR/R + 1) | [47] |
Normalized Red Edge Index (NREI_R) | NREI_R = RE/(NIR + RE + R) | [41] |
Ratio Vegetation Index (RVI) | RVI = NIR/R | [48] |
Normalized Red Edge Index (NREI) | NREI = RE/(NIR + G + RE) | [49] |
TFs | Waveband | |||
---|---|---|---|---|
G | R | RE | NIR | |
Mean | 0.064 | 0.503 | 0.205 | 0.249 |
Var | 0.278 | 0.541 | 0.135 | 0.021 |
Hom | 0.277 | 0.420 | 0.205 | 0.144 |
Con | 0.278 | 0.506 | 0.151 | 0.018 |
Dis | 0.163 | 0.548 | 0.007 | 0.147 |
Ent | 0.094 | 0.517 | 0.276 | 0.298 |
Sec | 0.214 | 0.459 | 0.180 | 0.123 |
Cor | 0.116 | 0.348 | 0.182 | 0.183 |
Input Variables | R2 | MAE | RMSE |
---|---|---|---|
VIs + R + G | 0.539 | 0.229 | 0.081 |
TFs | 0.614 | 0.215 | 0.067 |
VIs + TFs + R + G | 0.621 | 0.216 | 0.066 |
Model | Train | Test | ||||
---|---|---|---|---|---|---|
R2 | MAE | RMSE | R2 | MAE | RMSE | |
RF | 0.612 | 0.236 | 0.099 | 0.621 | 0.216 | 0.066 |
GBDT | 0.477 | 0.270 | 0.135 | 0.508 | 0.237 | 0.086 |
ADA | 0.763 | 0.184 | 0.061 | 0.616 | 0.215 | 0.067 |
ERT | 0.410 | 0.296 | 0.152 | 0.526 | 0.247 | 0.083 |
LR | 0.525 | 0.239 | 0.096 | 0.399 | 0.238 | 0.105 |
Stacking | 0.851 | 0.153 | 0.038 | 0.661 | 0.193 | 0.059 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Gao, L.; Xu, X.; Wu, W.; Yang, G.; Meng, Y.; Feng, H.; Li, Y.; Xue, H.; Chen, T. Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.). Agronomy 2025, 15, 38. https://doi.org/10.3390/agronomy15010038
Jiang X, Gao L, Xu X, Wu W, Yang G, Meng Y, Feng H, Li Y, Xue H, Chen T. Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.). Agronomy. 2025; 15(1):38. https://doi.org/10.3390/agronomy15010038
Chicago/Turabian StyleJiang, Xiangtai, Lutao Gao, Xingang Xu, Wenbiao Wu, Guijun Yang, Yang Meng, Haikuan Feng, Yafeng Li, Hanyu Xue, and Tianen Chen. 2025. "Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.)" Agronomy 15, no. 1: 38. https://doi.org/10.3390/agronomy15010038
APA StyleJiang, X., Gao, L., Xu, X., Wu, W., Yang, G., Meng, Y., Feng, H., Li, Y., Xue, H., & Chen, T. (2025). Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.). Agronomy, 15(1), 38. https://doi.org/10.3390/agronomy15010038