Spatial–Temporal Evolution Characteristics of Agricultural Economic Resilience: Evidence from Jiangxi Province, China
(This article belongs to the Section Farming Sustainability)
Abstract
:1. Introduction
2. Literature Review
3. Study Content
3.1. Overview of Study Area
3.2. Methods and Data Sources
3.2.1. Entropy Evaluation Method
3.2.2. Theil Index
3.2.3. Data Sources
3.3. Construction of Index System
4. Analysis of Spatial Difference in Agricultural Economic Resilience in Jiangxi
4.1. Overall Analysis
4.2. Regional Analysis of Spatial Difference in Agricultural Economic Resilience in Jiangxi
4.3. Spatial Difference Decomposition of Agricultural Economic Resilience in Jiangxi Province
5. Conclusions and Discussion
5.1. Conclusions
5.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hao, A.M.; Tan, J.Y. The mechanism and effect measure of rural industrial integration enabling agricultural resilience. J. Agric. Econ. 2020, 1–20. Available online: https://kns.cnki.net/kcms/detail/11.1883.S.20220418.2254.004.html (accessed on 15 October 2022). (In Chinese).
- Liu, Y.S.; Zhou, Y.; Li, Y.H. Rural regional system and rural revitalization strategy in China. Acta. Geor. Sin. 2019, 74, 2511–2528. (In Chinese) [Google Scholar]
- Hamel, G.; Välikangas, L. The quest for resilience. Harv. Bus. Rev. 2003, 81, 52–63. [Google Scholar] [PubMed]
- Tompkons, J.A. Four steps to business resilience. Ind. Manag. 2007, 49, 14–18. [Google Scholar]
- Martin, R.; Sunley, P. On the notion of regional economic resilien Ace: Conceptualization and explanation. J. Econ. Geogr. 2015, 15, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Wink, R. Regional Economic Resilience: Policy Experiences and Issues in Europe. Raumforsch. Raumordn. 2014, 72, 83–84. [Google Scholar] [CrossRef] [Green Version]
- Hassink, R. Regional resilience: A promising concept to explain differences in regional economic adaptability. Camb. J. Reg. Econ. Soc. 2010, 3, 45–58. [Google Scholar] [CrossRef]
- Edward, H. Economic shocks and regional economic resilience. In Urban and Regional Policy and Its Effects; Brookings Institution Press: Washington, DC, USA, 2012; pp. 23–35. [Google Scholar]
- Tan, J.T.; Zhao, H.B.; Liu, W.; Zhang, P.; Chou, F. Regional economic resilience and influential mechanism during economic crises in China. Sci. Geol. Sin. 2020, 40, 173–181. (In Chinese) [Google Scholar]
- Cellini, R.; Torrisi, G. Regional resilience in ltaly: A very long-run analysis. Reg. Stud. 2014, 48, 1779–2796. [Google Scholar] [CrossRef] [Green Version]
- Oxborrow, L.; Brindley, C. Regional resilience in recessionary times: A case study of the east midlands. Int. J. Retail Distrib. Manag. 2012, 40, 882–899. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Zhao, R.Y.; Yang, S.Y. Research on Spatial Spillover Effect of Industrial Structure and Regional Economic Resilience in Northeast China. Sci. Technol. Prog. Policy 2020, 37, 37–46. (In Chinese) [Google Scholar]
- Sun, H.; Yuan, W.P. Study on the relationship between economic resilience and high-quality economic development in western China. Reg. Econ. Rev. 2020, 5, 23–35. (In Chinese) [Google Scholar]
- Slocum, S.; Kline, C. Regional resilience: Opportunities, challenges and policy messages from Western North Carolina. J. Hosp. Tour. Res. 2014, 25, 403–406. [Google Scholar] [CrossRef]
- Han, Y.; Goetz, S.J. The economic resilience of U.S counties during the great recession. Rev. Reg. Stud. 2015, 45, 131–149. [Google Scholar] [CrossRef]
- Martin, R. Regional Economic Resilience, Hysteresis and Recessionary Shocks. Econ. Geogr. 2012, 12, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Li, T.Y. New progress in resilient city research. Urban Plan. Int. 2017, 32, 15–25. (In Chinese) [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, L.C.; Yao, S.M. Resilience evaluation of prefecture-level cities in the Yangtze River Delta from the perspective of social ecosystem. Chin. J. Popul. Resour. Environ. 2017, 27, 151–158. (In Chinese) [Google Scholar]
- Crespo, J.; Suire, R.; Vicente, J. Lock-In or Lock-Out? How Structural Properties of Knowledge Networks Affect Regional Resilience. J. Econ. Geogr. 2014, 14, 199–219. [Google Scholar] [CrossRef] [Green Version]
- Huggins, R.; Thompson, P. Local Entrepreneurial Resilienceand Culture: The Role of Social Values in Fostering Economic Recovery. Camb. J. Reg. Econ. Soc. 2015, 8, 313–330. [Google Scholar] [CrossRef]
- Prokkola, E.K. Border-regional resilience in EU internal and external border areas in Finland. Eur. Plan. Stud. 2019, 27, 1587–1606. [Google Scholar] [CrossRef]
- Liu, X.X.; Zhang, X.; Li, S.H. Measurement of China’s macroeconomic resilience: From the perspective of systemic risk. Soc. Sci. China 2021, 1, 12–32+204. (In Chinese) [Google Scholar]
- Zhao, C.H.Y.; Wang, S.H.P. The impact of economic Agglomeration on urban economic resilience. J. Zhongnan Univ. Econ. Law 2021, 1, 102–114. (In Chinese) [Google Scholar]
- Cui, G.R. Whether digital finance can improve China’s economic resilience. J. Shanxi Univ. Financ. Econ. 2021, 43, 29–41. (In Chinese) [Google Scholar]
- Li, Y.H.; Huang, H.Q.; Wang, S.H.Y. Research on the development path of Urban-Rural integration in traditional agricultural areas based on rural economic resilience: A case study of typical counties in Hebei Province. Econ. Geogr. 2021, 41, 28–33, 44. (In Chinese) [Google Scholar]
- Simmie, J.; Martin, R. The economic resilience of regions: Towards an evolutionary approach. Camb. J. Reg. Econ. Soc. 2010, 3, 27–43. [Google Scholar] [CrossRef] [Green Version]
- Lu, F.Y.; Yin, W.H.; Liu, N.N. Spatial and temporal evolution of industrial resilience and its influencing factors in the Yangtze River Delta urban Agglomeration. World Geogr. Stud. 2021, 30, 589–600. (In Chinese) [Google Scholar]
- Hu, Z.Q.; Miao, C.H.; Xiong, X.L.; Li, R.Y.; Feng, L.H. Impacts of industrial agglomeration on industrial resilience in the Yellow River Basin. Sci. Geogr. Sin. 2021, 41, 824–831. [Google Scholar]
- Li, B.; Zhong, Y.; Zhang, T.; Hua, N. Transcending the Covid-19 Crisis: Business Resilience and Innovation of the Restaurant Industryin China. J. Hosp. Tour. Manag. 2021, 49, 44–53. (In Chinese) [Google Scholar] [CrossRef]
- Yu, W.; Zhang, P. Spatio-temporal differentiation and influencing factors of agricultural resilience in China. Geogr. Geo-Inf. Sci. 2019, 35, 102–108. [Google Scholar]
- Jiang, H.; Zhang, C.; Jiang, H.P. Study on the effect and mechanism of agricultural economic resilience on high-quality agricultural development in China. Agric. Econ. Manag. 2022, 1, 20–32. (In Chinese) [Google Scholar]
- Boschma, R. Towards an evolutionary perspective on regional resilience. Reg. Stud. 2015, 49, 733–751. [Google Scholar] [CrossRef]
- Chen, Q.L.; Xie, J.; Zhang, M. Social vulnerability of agricultural natural disasters and its measurement. J. Agric. Econ. 2016, 8, 94–105. (In Chinese) [Google Scholar]
- Zhang, S.H.; Chen, J.C.; Zhang, L.Z. An Analysis of Agricultural Economic Growth a and Its Influencing Factors Based on CCA-Taking Shanxi province as an Example. Econ. Probl. 2012, 34, 85–88, 92. (In Chinese) [Google Scholar]
- Li, F.; Zeng, F.S.H. Spatial spillover effect of agricultural infrastructure based on spatial Dubin model. Econ. Geogr. 2016, 36, 142–147. (In Chinese) [Google Scholar]
- Lin, G.; Xu, X.; Yang, F. Research on the relationship between industrial specialization, diversification and economic resilience in Foshan City. Sci. Geol. Sin. 2020, 40, 1493–1504. (In Chinese) [Google Scholar]
Level 1 Indicator | Level 2 Indicator | Level 3 Indicator | Indicator Properties | Indicator Weights |
---|---|---|---|---|
Resistance | Economic Foundation | Gross output value of agriculture, forestry, animal husbandry, and fishery (million RMB) | Positive | 0.1281 |
Intermediate consumption of agriculture, forestry, animal husbandry, and fishery (million RMB) | negative | 0.0267 | ||
Rural per capita disposable income (RMB) | Positive | 0.035 | ||
Production factors | Number of employed people in primary industry (million people) | Positive | 0.0822 | |
Investment in fixed assets of primary industry (million RMB) | Positive | 0.0538 | ||
Crop sown area (ha) | Positive | 0.0878 | ||
Production condition | Fertilizer application rate (ton) | Positive | 0.0881 | |
Pesticide use (ton) | Positive | 0.1099 | ||
Rural electricity consumption (kWh) | Positive | 0.0608 | ||
Total power of agricultural machinery (kW) | Positive | 0.0875 | ||
Reconstruction capacity | Economic Growth | Rural per capita living expenditure (FM) | Positive | 0.0566 |
Expenditure on agriculture, forestry and water resources (ten thousand RM) | Positive | 0.0709 | ||
Technological advances | Expenditure on science and technology (million RMB) | Positive | 0.1127 |
Prefecture-Level City | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|
Fuzhou | 0.368 | 0.366 | 0.365 | 0.347 | 0.359 | 0.384 | 0.380 | 0.390 | 0.397 | 0.405 | 0.376 |
Ganzhou | 0.455 | 0.476 | 0.446 | 0.471 | 0.500 | 0.512 | 0.655 | 0.512 | 0.508 | 0.546 | 0.508 |
Ji’an | 0.395 | 0.416 | 0.402 | 0.422 | 0.441 | 0.444 | 0.455 | 0.433 | 0.416 | 0.447 | 0.427 |
Jingdezhen | 0.075 | 0.085 | 0.076 | 0.095 | 0.116 | 0.114 | 0.138 | 0.138 | 0.155 | 0.160 | 0.115 |
Jiujiang | 0.304 | 0.324 | 0.308 | 0.327 | 0.338 | 0.345 | 0.362 | 0.371 | 0.357 | 0.360 | 0.340 |
Nanchang | 0.303 | 0.311 | 0.325 | 0.294 | 0.307 | 0.314 | 0.356 | 0.389 | 0.418 | 0.462 | 0.348 |
Pingxiang | 0.096 | 0.103 | 0.102 | 0.125 | 0.145 | 0.144 | 0.147 | 0.153 | 0.164 | 0.181 | 0.136 |
Shangrao | 0.439 | 0.453 | 0.415 | 0.434 | 0.461 | 0.471 | 0.488 | 0.501 | 0.510 | 0.493 | 0.466 |
Xinyu | 0.091 | 0.114 | 0.119 | 0.122 | 0.143 | 0.132 | 0.147 | 0.166 | 0.171 | 0.197 | 0.140 |
Yichun | 0.431 | 0.448 | 0.417 | 0.437 | 0.471 | 0.480 | 0.505 | 0.526 | 0.511 | 0.526 | 0.475 |
Yingtan | 0.059 | 0.075 | 0.076 | 0.099 | 0.109 | 0.115 | 0.129 | 0.143 | 0.167 | 0.171 | 0.114 |
Average value | 0.274 | 0.288 | 0.277 | 0.288 | 0.308 | 0.314 | 0.342 | 0.338 | 0.343 | 0.359 | 0.283 |
Agricultural Economic Resilience Level | 2011 | 2020 |
---|---|---|
High (resistance value > 0.400) | Ganzhou, Yichun, Shangrao | Fuzhou, Ganzhou, Ji’an, Nanchang, Shangrao, Yichun |
Moderate (0.200 < resistance value ≤ 0.400) | Fuzhou, Ji’an, Jiujiang, Nanchang | Jiujiang |
Low (resistance value ≤ 0.200) | Jingdezhen, Pingxiang, Yingtan, Xinyu | Jingdezhen, Pingxiang, Yingtan, Xinyu |
Year | Northern Ganzhou | Northeastern Ganzhou | Central Ganzhou | Within Region | Inter-Regional | Territorial Thiel Index | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Thiel Index | Contribution Rate | Thiel Index | Contribution Rate | Thiel Index | Contribution Rate | Thiel Index | Contribution Rate | Thiel Index | Contribution Rate | ||
2011 | 0.0001 | 0.001% | 0.2839 | 16.11% | 0.1776 | 16.80% | 0.1582 | 32.91% | 0.3225 | 67.09% | 0.4807 |
2012 | 0.0009 | 0.013% | 0.2616 | 15.50% | 0.1684 | 16.63% | 0.1481 | 32.17% | 0.3121 | 67.83% | 0.4602 |
2013 | 0.0011 | 0.016% | 0.2569 | 16.22% | 0.1588 | 16.71% | 0.1425 | 32.98% | 0.2895 | 67.02% | 0.4320 |
2014 | 0.0024 | 0.037% | 0.2241 | 14.42% | 0.1535 | 16.47% | 0.1313 | 30.99% | 0.2925 | 69.01% | 0.4238 |
2015 | 0.0021 | 0.034% | 0.2089 | 14.02% | 0.1442 | 16.14% | 0.1229 | 30.26% | 0.2833 | 69.74% | 0.4062 |
2016 | 0.0020 | 0.031% | 0.2094 | 13.83% | 0.1493 | 16.44% | 0.1253 | 30.35% | 0.2876 | 69.65% | 0.4129 |
2017 | 0.0003 | 0.004% | 0.1887 | 11.34% | 0.1482 | 14.84% | 0.1189 | 26.19% | 0.3351 | 73.81% | 0.4540 |
2018 | 0.0008 | 0.014% | 0.1846 | 13.97% | 0.1403 | 17.69% | 0.1143 | 31.70% | 0.2462 | 68.30% | 0.3605 |
2019 | 0.0024 | 0.046% | 0.1633 | 13.53% | 0.1294 | 17.87% | 0.1038 | 31.53% | 0.2254 | 68.47% | 0.3292 |
2020 | 0.0015 | 0.031% | 0.1571 | 13.52% | 0.1079 | 15.47% | 0.0922 | 29.08% | 0.2247 | 70.92% | 0.3169 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Y.; Zou, P.; Zhang, W.; Liu, X.; Liu, B.; Kang, X. Spatial–Temporal Evolution Characteristics of Agricultural Economic Resilience: Evidence from Jiangxi Province, China. Agronomy 2022, 12, 3144. https://doi.org/10.3390/agronomy12123144
Ye Y, Zou P, Zhang W, Liu X, Liu B, Kang X. Spatial–Temporal Evolution Characteristics of Agricultural Economic Resilience: Evidence from Jiangxi Province, China. Agronomy. 2022; 12(12):3144. https://doi.org/10.3390/agronomy12123144
Chicago/Turabian StyleYe, Yongmei, Ping Zou, Weihang Zhang, Xieqihua Liu, Bin Liu, and Xiaolan Kang. 2022. "Spatial–Temporal Evolution Characteristics of Agricultural Economic Resilience: Evidence from Jiangxi Province, China" Agronomy 12, no. 12: 3144. https://doi.org/10.3390/agronomy12123144
APA StyleYe, Y., Zou, P., Zhang, W., Liu, X., Liu, B., & Kang, X. (2022). Spatial–Temporal Evolution Characteristics of Agricultural Economic Resilience: Evidence from Jiangxi Province, China. Agronomy, 12(12), 3144. https://doi.org/10.3390/agronomy12123144