A Machine Learning Approach for the Autonomous Identification of Hardness in Extraterrestrial Rocks from Digital Images
Abstract
:1. Introduction
2. Method
2.1. Meta Learning of Random Forests and Support Vector Regression (MRFSVR)
2.2. Method of Support Vector Regression (SVR)
2.3. Method of Random Forest (RF)
2.4. Performance Parameters
3. Datasets
3.1. Dataset Preparation
3.2. Feature Calculation Method
3.2.1. Roundness
3.2.2. Ovality, Extension, and Convexity
3.2.3. Fractal Dimension
3.2.4. The Mean Value in the Lab Color Space
3.2.5. Contrast, Correlation, Energy, and Homogeneity
3.3. Feature Analysis
4. Experiments
4.1. Computational Settings
4.2. Comparison of Four Models
4.3. Experimental Verification
4.4. Rock Hardness Prediction from the Images of Mars Rover
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, J.; Zhang, X.; Zou, Y. Hierarchical path planner for unknown space exploration using reinforcement learning-based intelligent frontier selection. Expert Syst. Appl. 2023, 230, 120630. [Google Scholar] [CrossRef]
- Stentz, A. Optimal and Efficient Path Planning for Unknown and Dynamic Environments. IEEE Int. Conf. Robot. Autom. 1994, 4, 3310–3317. [Google Scholar]
- Ewing, R.C.; Lapotre, M.G.A.; Lewis, K.W.; Day, M.; Stein, N.; Rubin, D.M.; Sullivan, R.; Banham, S.; Lamb, M.P.; Bridges, N.T.; et al. Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars. J. Geophys. Res. Planets 2017, 122, 2544–2573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cheng, Q.; Li, J. Technical progress in the utilization and exploitation of small celestial body resources. Acta Astronaut. 2023, 208, 219–255. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, Q.; Zhou, W.; Li, J.; Yu, T.; Li, F.; Xu, Y.; Zhang, X. An automatic assisted drill system for sampling deep layer regolith of extraterrestrial celestial bodies. Acta Astronaut. 2023, 207, 375–391. [Google Scholar] [CrossRef]
- Blake, D.F.; Morris, R.V.; Kocurek, G.; Morrison, S.M.; Downs, R.T.; Bish, D.; Ming, D.W.; Edgett, K.S.; Rubin, D.; Goetz, W.; et al. Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science 2013, 341, 1239505. [Google Scholar] [CrossRef]
- Cabrol, N.A.; Grin, E.A.; Carr, M.H.; Sutter, B.; Moore, J.M.; Farmer, J.D.; Greeley, R.; Kuzmin, R.O.; DesMarais, D.J.; Kramer, M.G.; et al. Exploring Gusev Crater with Spirit: Review of science objectives and testable hypotheses. J. Geophys. Res. 2003, 108, E12. [Google Scholar] [CrossRef]
- Golombek, M.; Kipp, D.; Warner, N.; Daubar, I.J.; Fergason, R.L.; Kirk, R.L.; Beyer, R.; Huertas, A.; Piqueux, S.; Putzig, N.; et al. Selection of the InSight Landing Site. Space Sci. Rev. 2016, 211, 5–95. [Google Scholar] [CrossRef]
- Xiao, X.; Cui, H.; Yao, M.; Tian, Y. Autonomous rock detection on Mars through region contrast. Adv. Space Res. 2017, 60, 626–635. [Google Scholar] [CrossRef]
- Yang, J.; Kang, Z.; Yang, Z.; Xie, J.; Xue, B.; Yang, J.; Tao, J. A Laboratory Open-Set Martian Rock Classification Method Based on Spectral Signatures. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Tang, X.; Xu, J.; Zhang, Y.; Zhao, H.; Paluszny, A.; Wan, X.; Wang, Z. The rock-forming minerals and macroscale mechanical properties of asteroid rocks. Eng. Geol. 2023, 321, 107154. [Google Scholar] [CrossRef]
- Crane, K.; Rich, J. Lithospheric strength and elastic properties for Mars from InSight geophysical data. Icarus 2023, 400, 115581. [Google Scholar] [CrossRef]
- Marteau, E.; Wehage, K.; Higa, S.; Moreland, S.; Meirion-Griffith, G. Geotechnical assessment of terrain strength properties on Mars using the Perseverance rover’s abrading bit. J. Terramech. 2023, 107, 13–22. [Google Scholar] [CrossRef]
- Foucher, F.; Bost, N.; Guimbretière, G.; Courtois, A.; Hickman-Lewis, K.; Marceau, E.; Martin, P.; Westall, F. Igneous rock powder identification using colour cameras: A powerful method for space exploration. Icarus 2021, 375, 114848. [Google Scholar] [CrossRef]
- Gutiérrez-Cano, J.D.; Catalá-Civera, J.M.; López-Buendía, A.M.; Plaza-González, P.J.; Penaranda-Foix, F.L. High-resolution detection of rock-forming minerals by permittivity measurements with a near-field scanning microwave microscope. Sensors 2022, 22, 1138. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.E.M.; Lana, M.S.; Pereira, T.M. Evaluation of machine learning methods for rock mass classification. Neural Comput. Appl. 2021, 34, 4633–4642. [Google Scholar] [CrossRef]
- Di, K.; Yue, Z.; Liu, Z.; Wang, S. Automated rock detection and shape analysis from Mars rover imagery and 3D point cloud data. J. Earth Sci. 2013, 24, 125–135. [Google Scholar] [CrossRef]
- Houshmand, N.; Goodfellow, S.; Esmaeili, K.; Calderón, J.C.O. Rock type classification based on petrophysical, geochemical, and core imaging data using machine and deep learning techniques. Appl. Comput. Geosci. 2022, 16, 100104. [Google Scholar] [CrossRef]
- Hong, K.; Han, E.; Kang, K. Determination of geological strength index of jointed rock mass based on image processing. J. Rock Mech. Geotech. Eng. 2017, 9, 702–708. [Google Scholar] [CrossRef]
- Lee, J.; Cook, O.J.; Argüelles, A.P.; Mehmani, Y. Imaging geomechanical properties of shales with infrared light. Fuel 2023, 334, 126467. [Google Scholar] [CrossRef]
- Tang, P.; Zhang, D.; Li, H. Predicting permeability from 3D rock images based on CNN with physical information. J. Hydrol. 2022, 606, 127473. [Google Scholar] [CrossRef]
- Turchi, L.; Payler, S.J.; Sauro, F.; Pozzobon, R.; Massironi, M.; Bessone, L. The Electronic FieldBook: A system for supporting distributed field science operations during astronaut training and human planetary exploration. Planet. Space Sci. 2021, 197, 105164. [Google Scholar] [CrossRef]
- Karaman, K.; Kesimal, A. A comparative study of Schmidt hammer test methods for estimating the uniaxial compressive strength of rocks. Bull. Eng. Geol. Environ. 2014, 74, 507–520. [Google Scholar] [CrossRef]
- Panchuk, K. Physical Geology; First University of Saskatchewan Edition; University of Saskatchewan: Saskatoon, SK, Canada, 2017. [Google Scholar]
- Sun, W.; Wang, L.; Wang, Y. Mechanical properties of rock materials with related to mineralogical characteristics and grain size through experimental investigation: A comprehensive review. Front. Struct. Civ. Eng. 2017, 11, 322–328. [Google Scholar] [CrossRef]
- Li, J.; Gao, F.; Lin, S.; Guo, M.; Li, Y.; Liu, H.; Qin, S.; Wen, Q. Quantum k-fold cross-validation for nearest neighbor classification algorithm. Physica A 2023, 611, 128435. [Google Scholar] [CrossRef]
- Luo, C.; Keshtegar, B.; Zhu, S.P.; Niu, X. EMCS-SVR: Hybrid efficient and accurate enhanced simulation approach coupled with adaptive SVR for structural reliability analysis. Comput. Methods Appl. Mech. Eng. 2022, 400, 115499. [Google Scholar] [CrossRef]
- Ngo, G.; Beard, R.; Chandra, R. Evolutionary bagging for ensemble learning. Neurocomputing 2022, 510, 1–14. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, J.; Hu, L.; He, Z. Random forest clustering for discrete sequences. Pattern Recognit. Lett. 2023, 174, 145–151. [Google Scholar] [CrossRef]
- Chander, G.P.; Das, S. Hesitant t-spherical fuzzy linear regression model based decision making approach using gradient descent method. Eng. Appl. Artif. Intell. 2023, 122, 106074. [Google Scholar] [CrossRef]
- Wong, T.T. Parametric methods for comparing the performance of two classification algorithms evaluated by k-fold cross validation on multiple data sets. Pattern Recognit. 2017, 65, 97–107. [Google Scholar] [CrossRef]
- Kim, B.; Ryu, K.H.; Heo, S. Mean squared error criterion for model-based design of experiments with subset selection. Comput. Chem. Eng. 2022, 159, 107667. [Google Scholar] [CrossRef]
- Tang, Y.; Shang, L.; Zhang, R.; Li, J.; Fu, H. Hybrid divergence based on mean absolute scaled error for incipient fault detection. Eng. Appl. Artif. Intell. 2024, 129, 107662. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, S.; Mer, V.N. Non-homogeneous Riemannian gradient equations for sum of squares of Bures–Wasserstein metric. J. Comput. Appl. Math. 2024, 438, 115555. [Google Scholar] [CrossRef]
- Šimunović, V.; Baršić, G. Evaluating the spindle error of the roundness measurement device. Meas. Sens. 2024, 32, 101038. [Google Scholar] [CrossRef]
- Nguyen, H.N.; Lisser, A.; Liu, J. Convexity of linear joint chance constrained optimization with elliptically distributed dependent rows. Results Control Optim. 2023, 12, 100285. [Google Scholar] [CrossRef]
- da S. Bessa, J.; Da Silva, J.V.; Frederico, M.N.; Ricarte, G.C. Sharp Hessian estimates for fully nonlinear elliptic equations under relaxed convexity assumptions, oblique boundary conditions and applications. J. Differ. Equ. 2023, 367, 451–493. [Google Scholar]
- Zhang, H.; Hu, X.; Wang, L.; Zhao, E.; Liu, C. Effect mechanism of block convexity on the shear behaviors of soil-rock mixtures by the developed 3D spherical harmonics-based modeling approach. Comput. Geotech. 2023, 155, 105183. [Google Scholar] [CrossRef]
- Rabal, H.; Grumel, E.; Cap, N.; Buffarini, L.; Trivi, M. A descriptor of speckle textures using box fractal dimension curve. Opt. Lasers Eng. 2018, 106, 47–55. [Google Scholar] [CrossRef]
- Bian, J.; Ma, Z.; Wang, C.; Huang, T.; Zeng, C. Early warning for spatial ecological system: Fractal dimension and deep learning. Physica A 2024, 633, 129401. [Google Scholar] [CrossRef]
- Dong, S.; Yu, X.; Zeng, L.; Ye, J.; Wang, L.; Ji, C.; Fu, K.; Wang, R. Relationship between box-counting fractal dimension and properties of fracture networks. Unconv. Resour. 2024, 4, 100068. [Google Scholar] [CrossRef]
- Muniraj, M.; Dhandapani, V. Underwater image enhancement by modified color correction and adaptive Look-Up-Table with edge-preserving filter. Signal Process. Image Commun. 2023, 113, 116939. [Google Scholar] [CrossRef]
- Sahrir, C.D.; Ruslin, M.; Lee, S.Y.; Lin, W.C. Effect of various post-curing light intensities, times, and energy levels on the color of 3D-printed resin crowns. J. Dent. Sci. 2024, 19, 357–363. [Google Scholar] [CrossRef]
- Yung, D.; Tse, A.K.; Hsung, R.T.; Botelho, M.G.; Pow, E.H.; Lam, W.Y. Comparison of the colour accuracy of a single-lens reflex camera and a smartphone camera in a clinical context. J. Dent. 2023, 137, 104681. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Jiang, Z.; Li, J.; Zhang, D. Multiple color representation and fusion for diabetes mellitus diagnosis based on back tongue images. Comput. Biol. Med. 2023, 155, 106652. [Google Scholar] [CrossRef]
- Fu, R.; Li, J.; Yang, C.; Li, J.; Yu, X. Image colour application rules of Shanghai style Chinese paintings based on machine learning algorithm. Eng. Appl. Artif. Intell. 2024, 132, 107903. [Google Scholar] [CrossRef]
- Yang, B.; Zhu, C.; Li, F.W.; Wei, T.; Liang, X.; Wang, Q. IAACS: Image aesthetic assessment through color composition and space formation. Virtual Real. Intell. Hardw. 2023, 5, 42–56. [Google Scholar] [CrossRef]
- Prakash, K.; Saradha, S. Efficient prediction and classification for cirrhosis disease using LBP, GLCM and SVM from MRI images. Mater. Today Proc. 2023, 81, 383–388. [Google Scholar] [CrossRef]
- Fajardo, J.I.; Paltán, C.A.; López, L.M.; Carrasquero, E.J. Textural analysis by means of a gray level co-occurrence matrix method. Case: Corrosion in steam piping systems. Mater. Today Proc. 2022, 49, 149–154. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, S. A rock fabric classification method based on the grey level co-occurrence matrix and the Gaussian mixture model. J. Nat. Gas Sci. Eng. 2022, 104, 104627. [Google Scholar] [CrossRef]
- Utaminingrum, F.; Sarosa, S.J.A.; Karim, C.; Gapsari, F.; Wihandika, R.C. The combination of gray level co-occurrence matrix and back propagation neural network for classifying stairs descent and floor. ICT Express 2022, 8, 151–160. [Google Scholar] [CrossRef]
- Pare, S.; Bhandari, A.; Kumar, A.; Singh, G. An optimal color image multilevel thresholding technique using grey-level co-occurrence matrix. Expert Syst. Appl. 2017, 87, 335–362. [Google Scholar] [CrossRef]
- Artificial Lunar Landscape Dataset. Available online: https://www.kaggle.com (accessed on 12 June 2019).
Type | Number of Rocks | Number of Images | Petrogenesis | Mohs Hardness |
---|---|---|---|---|
Granite | 100 | 300 | Igneous rock | 6.1 |
Limestone | 100 | 300 | Sedimentary rock | 3.5 |
Rhyolite | 100 | 294 | Igneous rock | 6.5 |
Sandstone | 100 | 300 | Sedimentary rock | 6.9 |
Basalt | 100 | 300 | Igneous rock | 5.5 |
Model | R2 | MSE | MAE |
---|---|---|---|
Linear | 0.4764 | 0.7393 | 0.6722 |
RF | 0.8162 | 0.2595 | 0.2462 |
SVR | 0.7485 | 0.3551 | 0.4134 |
MEFSVR | 0.8219 | 0.2514 | 0.2431 |
Numbers | Predicted Values | Experimental Values | MSE | MAE |
---|---|---|---|---|
Rock1-1 | 6.10734 | 5 | 1.1186 | 1.10734 |
Rock1-2 | 3.6649 | 5 | 2.9888 | 1.3351 |
Rock1-3 | 3.78789 | 5 | 2.9963 | 1.2122 |
Rock2-1 | 3.92277 | 5 | 2.9855 | 1.0772 |
Rock2-2 | 5.27432 | 5 | 0.0732 | 0.27432 |
Rock2-3 | 5.31166 | 5 | 0.1004 | 0.1004 |
Rock3-1 | 5.13787 | 5 | 0.0188 | 0.1378 |
Rock3-2 | 4.61253 | 5 | 0.3742 | 0.38747 |
Rock3-3 | 4.76652 | 5 | 0.2852 | 0.23348 |
Rock4-1 | 4.33966 | 5 | 0.4443 | 0.66034 |
Rock4-2 | 5.19374 | 5 | 0.0384 | 0.19374 |
Rock4-3 | 3.77161 | 5 | 2.9771 | 1.22839 |
Rock5-1 | 4.48283 | 5 | 0.2631 | 0.51717 |
Rock5-2 | 3.92592 | 5 | 2.7257 | 1.07408 |
Rock5-3 | 4.42251 | 5 | 0.3108 | 0.57749 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zhao, H.; Yuan, Z.; Xiao, L.; Shen, C.; Wan, X.; Tang, X.; Zhang, L. A Machine Learning Approach for the Autonomous Identification of Hardness in Extraterrestrial Rocks from Digital Images. Aerospace 2025, 12, 26. https://doi.org/10.3390/aerospace12010026
Liu S, Zhao H, Yuan Z, Xiao L, Shen C, Wan X, Tang X, Zhang L. A Machine Learning Approach for the Autonomous Identification of Hardness in Extraterrestrial Rocks from Digital Images. Aerospace. 2025; 12(1):26. https://doi.org/10.3390/aerospace12010026
Chicago/Turabian StyleLiu, Shuyun, Haifeng Zhao, Zihao Yuan, Liping Xiao, Chengcheng Shen, Xue Wan, Xuhai Tang, and Lu Zhang. 2025. "A Machine Learning Approach for the Autonomous Identification of Hardness in Extraterrestrial Rocks from Digital Images" Aerospace 12, no. 1: 26. https://doi.org/10.3390/aerospace12010026
APA StyleLiu, S., Zhao, H., Yuan, Z., Xiao, L., Shen, C., Wan, X., Tang, X., & Zhang, L. (2025). A Machine Learning Approach for the Autonomous Identification of Hardness in Extraterrestrial Rocks from Digital Images. Aerospace, 12(1), 26. https://doi.org/10.3390/aerospace12010026