Effect of Primary Cable Position on Accuracy in Non-Toroidal-Shaped Pass-Through Current Transformer
Abstract
:1. Introduction
2. Materials and Methods
3. Simulations
3.1. Simulation Setup
3.2. Simulation Results
4. Experimental Tests
4.1. Experimental Setup
4.2. Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IEC 61869-1:2007; Instrument Transformers—Part 1: General Requirements. International Electrotechnical Commission: Geneva, Switzerland, 2007.
- IEC 61869-2:2012; Instrument Transformers—Part 2: Additional Requirements for Current Transformers. International Electrotechnical Commission: Geneva, Switzerland, 2012.
- IEEE. Guide for Field Testing of Relaying Current Transformers; IEEE: Piscataway, NJ, USA, 2007; pp. 1–38. [Google Scholar]
- Platero, C.A.; Granizo, R.; Blazquez, F.; Marchesi, E. Testing of Non-Toroidal Shape Primary Pass-Through Current Transformer for Electrical Machine Monitoring and Protection. In Proceedings of the 2018 IEEE International Conference on Industrial Technology, Lyon, France, 20–22 February 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Platero, C.A.; Sánchez-Fernández, J.A.; Gyftakis, K.N.; Blazquez, F.; Granizo, R. Performance Problems of Non-Toroidal Shaped Current Transformers. Sensors 2020, 20, 3025. [Google Scholar] [CrossRef] [PubMed]
- D’Avanzo, G.; Delle Femine, A.; Gallo, D.; Landi, C.; Luiso, M. Impact of Inductive Current Transformers on Synchrophasor Measurement in Presence of Modulations. Measurement 2020, 155, 107535. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Stano, E. Proposal for Extension of Routine Tests of the Inductive Current Transformers to Evaluation of Transformation Accuracy of Higher Harmonics. Electr. Power Energy Syst. 2019, 113, 842–849. [Google Scholar] [CrossRef]
- Abdoos, A.A.; Gholamian, S.A.; Takami, M.M.A. A Precise Scheme for Detection of Current Transformer Saturation based on Time Frequency Analysis. Measurement 2016, 94, 692–706. [Google Scholar] [CrossRef]
- Biswal, S.; Biswal, M. Detection of Current Transformer Saturation Phenomenon for Secured Operation of Smart Power Network. Electr. Power Syst. Res. 2019, 175, 105926. [Google Scholar] [CrossRef]
- Ji, T.; Shi, M.; Li, M.; Zhang, L.; Wu, Q. Current Transformer Saturation Detection Using Morphological Gradient and Morphological Decomposition and Its Hardware Implementation. Trans. Ind. Electron. 2017, 64, 4721–4729. [Google Scholar] [CrossRef]
- Duan, J.; Lei, Y.; Li, H. Identification of Current Transformer Saturation based on the Improved Gradient Mathematical Morphology Method. J. Eng. 2017, 2017, 1050–1054. [Google Scholar] [CrossRef]
- Weng, H.; Wang, S.; Wan, Y.; Lin, X.; Li, Z.; Huang, J. Discrete Fréchet Distance Algorithm based Criterion of Transformer Differential Protection with the Immunity to Saturation of Current Transformer. Electr. Power Energy Syst. 2020, 115, 105449. [Google Scholar] [CrossRef]
- Medeiros, P.R.; Costa, F.B. A Wavelet-Based Transformer Differential Protection with Differential Current Transformer Saturation and Cross-Country Fault Detection. Trans. Power Deliv. 2018, 33, 789–799. [Google Scholar] [CrossRef]
- Zheng, T.; Huang, T.; Ma, Y.; Zhang, Z.; Liu, L. Histogram-Based Method to Avoid Maloperation of Transformer Differential Protection Due to Current-Transformer Saturation Under External Faults. Trans. Power Deliv. 2019, 33, 610–619. [Google Scholar] [CrossRef]
- Cavallera, D.; Oiring, V.; Coulomb, J.L.; Chadebec, O.; Caillault, B.; Zgainski, F. A New Method to Evaluate Residual Flux Thanks to Leakage Flux, Application to a Transformer. IEEE Trans. Magn. 2014, 50, 1005–1008. [Google Scholar] [CrossRef]
- Naseri, F.; Kazemi, Z.; Farjah, E.; Ghanbari, T. Fast Detection and Compensation of Current Transformer Saturation Using Extended Kalman Filter. Trans. Power Deliv. 2019, 34, 1087–1097. [Google Scholar] [CrossRef]
- Ali, M.; Son, D.-H.; Kang, S.-H.; Nam, S.-R. An Accurate CT Saturation Classification Using a Deep Learning Approach Based on Unsupervised Feature Extraction and Supervised Fine-Tuning Strategy. Energies 2017, 10, 1830. [Google Scholar] [CrossRef]
- Odinaev, I.; Pazderin, A.; Safaraliev, M.; Kamalov, F.; Senyuk, M.; Gubin, P.Y. Detection of Current Transformer Saturation Based on Machine Learning. Mathematics 2024, 12, 389. [Google Scholar] [CrossRef]
- Ripka, P.; Draxler, K.; Styblíkova, R. DC-Compensated Current Transformer. Sensors 2016, 16, 114. [Google Scholar] [CrossRef] [PubMed]
- Cataliotti, A.; Di Cara, D.; Emanuel, A.E.; Nuccio, S. Characterization of Clamp-On Current Transformers under Nonsinusoidal Conditions. IEEE Trans. Power Deliv. 2009, 24, 373–380. [Google Scholar] [CrossRef]
- Draxler, K.; Styblíková, R.; Rada, V.; Kučera, J.; Odehnal, M. Using a Current Loop and Homogeneous Primary Winding for Calibrating a Current Transformer. IEEE Trans. Instrum. Meas. 2013, 62, 1658–1663. [Google Scholar] [CrossRef]
- Ma, X.; Guo, Y.; Chen, X.; Xiang, Y.; Chen, K.L. Impact of Coreless Current Transformer Position on Current Measurement. IEEE Trans. Instrum. Meas. 2019, 68, 3801–3809. [Google Scholar] [CrossRef]
- Mingotti, A.; Costa, F.; Peretto, L.; Tinarelli, R. Effect of Proximity, Burden, and Position on the Power Quality Accuracy Performance of Rogowski Coils. Sensors 2022, 22, 397. [Google Scholar] [CrossRef] [PubMed]
- Veeranjaneyulu, M.; Srungavarapu, G. A Novel method for current measurement in an off-centered conductor of a circular array current probe. Measurement 2024, 233, 114744. [Google Scholar] [CrossRef]
- Zapf, F.; Weiss, R.; Weigel, R. Crosstalk in Elliptical Sensor Arrays for Current Measurement. IEEE Trans. Instrum. Meas. 2022, 71, 9002811. [Google Scholar] [CrossRef]
- Available online: https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/brochure/ansys-maxwell-brochure.pdf (accessed on 22 August 2024).
- AK Steel Corporation. Magnetic Cores Data Bulletin. Available online: https://www.matweb.com/search/datasheet.aspx?matguid=e9c5392fb06542ca95dcce43149106ac (accessed on 22 August 2024).
Parameter | Magnitude | Unit | |
---|---|---|---|
Manufacturer | ELEQ | ||
Model | GSL235 × 420 A 155 × 310 | ||
Rated primary current | I1N | 500 | A |
Rated secondary current | I2N | 1 | A |
Rated burden power | SN | 1 | VA |
Accuracy class | 5P10 | ||
Frequency | f | 50 | Hz |
Rated voltage | UN | 0.72/3/- | kV |
Insulation thermal class | E | ||
Short-time thermal current | 50/1 | kA/s | |
Operating temperature range | T | −5/+40 | °C |
Secondary Current, I2 [ARMS]/I1 = 5000 [ARMS] | |||||||||
---|---|---|---|---|---|---|---|---|---|
X Distance to the Center (mm) | |||||||||
0 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | ||
Y Distance (mm) | 0 | 9.91 | 9.88 | 9.87 | 9.87 | 9.84 | 9.74 | 9.45 | 8.77 |
20 | 9.88 | 9.88 | 9.87 | 9.87 | 9.83 | 9.72 | 9.41 | 8.70 | |
40 | 9.87 | 9.87 | 9.87 | 9.86 | 9.80 | 9.65 | 9.28 | 8.47 | |
60 | 9.87 | 9.87 | 9.86 | 9.82 | 9.74 | 9.52 | 9.02 | 8.02 | |
Composite Error, Ɛc (%) | |||||||||
Horizontal Distance to the Center (mm) | |||||||||
0 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | ||
Y Distance (mm) | 0 | 2.33 | 3.21 | 3.23 | 3.36 | 4.10 | 6.73 | 14.01 | 31.08 |
20 | 3.21 | 3.21 | 3.24 | 3.42 | 4.29 | 7.18 | 14.96 | 32.87 | |
40 | 3.23 | 3.24 | 3.32 | 3.68 | 4.98 | 8.76 | 18.14 | 38.69 | |
60 | 3.36 | 3.42 | 3.68 | 4.49 | 6.73 | 12.27 | 24.66 | 50.03 |
Primary Cable Position | I1 [ARMS] | I2 [ARMS] | Composite Error (εc) |
---|---|---|---|
Center | 5043 | 9.96 | 3.81% |
Left | 5024 | 8.17 | 47.61% |
Right | 5045 | 8.17 | 47.62% |
Top | 5027 | 9.89 | 4.39% |
Bottom | 5069 | 9.93 | 4.38% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero, J.M.; Platero, C.A.; Blázquez, F.; Sánchez, J.A. Effect of Primary Cable Position on Accuracy in Non-Toroidal-Shaped Pass-Through Current Transformer. Sensors 2024, 24, 5524. https://doi.org/10.3390/s24175524
Guerrero JM, Platero CA, Blázquez F, Sánchez JA. Effect of Primary Cable Position on Accuracy in Non-Toroidal-Shaped Pass-Through Current Transformer. Sensors. 2024; 24(17):5524. https://doi.org/10.3390/s24175524
Chicago/Turabian StyleGuerrero, José M., Carlos A. Platero, Francisco Blázquez, and José A. Sánchez. 2024. "Effect of Primary Cable Position on Accuracy in Non-Toroidal-Shaped Pass-Through Current Transformer" Sensors 24, no. 17: 5524. https://doi.org/10.3390/s24175524
APA StyleGuerrero, J. M., Platero, C. A., Blázquez, F., & Sánchez, J. A. (2024). Effect of Primary Cable Position on Accuracy in Non-Toroidal-Shaped Pass-Through Current Transformer. Sensors, 24(17), 5524. https://doi.org/10.3390/s24175524