Estimating 2009–2017 Impervious Surface Change in Gwadar, Pakistan Using the HJ-1A/B Constellation, GF-1/2 Data, and the Random Forest Algorithm
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data and Processing
2.2.1. HJ-1A/B Constellation and GF-1/2 Satellite Images
2.2.2. Image Processing
3. Methodology
3.1. Overall Description
3.2. ISP Reference Data Extraction
3.3. ISP Estimation Model
3.3.1. Random Forest
3.3.2. Predictor Selection and RF-Based Estimating for ISP
3.4. Accuracy Measurements
4. Results
4.1. ISP Reference Data
4.2. Accuracy Analysis
4.3. ISP Spatial Distribution and Variation Trend for Gwadar City
5. Discussion
5.1. The Influence of Reference Data on ISP Accuracy
5.2. Sensitivity Analysis of the Input Variables on Results Accuracy
5.3. The Advantages and Disadvantages of the Random Forest Model
5.4. The Limitations of the Study
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Xu, H.; Lin, D.; Tang, F. The impact of impervious surface development on land surface temperature in a subtropical city: Xiamen, China. Int. J. Climatol. 2013, 33, 1873–1883. [Google Scholar] [CrossRef]
- Sexton, J.O.; Song, X.P.; Huang, C.Q.; Channan, S.; Baker, M.E.; Townshend, J.R. Urban growth of the Washington, DC-Baltimore, MD metropolitan region from 1984 to 2010 by annual, Landsat-based estimates of impervious cover. Remote Sens. Environ. 2013, 129, 42–53. [Google Scholar] [CrossRef]
- Xu, H.; Wang, M. Remote sensing-based retrieval of ground impervious surfaces. J. Remote Sens. 2016, 20, 1270–1289. [Google Scholar]
- Lambin, E.F.; Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Jat, M.K.; Garg, P.K.; Khare, D. Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 26–43. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Potere, D.; Schneider, A.; Angel, S.; Civco, D.L. Mapping urban areas on a global scale: Which of the eight maps now available is more accurate? Int. J. Remote Sens. 2009, 30, 6531–6558. [Google Scholar] [CrossRef]
- Song, X.P.; Sexton, J.O.; Huang, C.Q.; Channan, S.; Townshend, J.R. Characterizing the magnitude, timing and duration of urban growth from time series of Landsat-based estimates of impervious cover. Remote Sens. Environ. 2016, 175, 1–13. [Google Scholar] [CrossRef]
- Hansen, M.C.; Defries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 1km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Potere, D. A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 2009, 4, 044003. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Smith, S.J.; Zhao, K.; Imhoff, M.; Thomson, A.; Bond-Lamberty, B.; Asrar, G.R.; Zhang, X.; He, C.; Elvidge, C.D. A global map of urban extent from nightlights. Environ. Res. Lett. 2015, 10, 054011. [Google Scholar] [CrossRef]
- Gluch, R.; Quattrochi, D.A.; Luvall, J.C. A multi-scale approach to urban thermal analysis. Remote Sens. Environ. 2006, 104, 123–132. [Google Scholar] [CrossRef]
- Hu, X.; Weng, Q. Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. Remote Sens. Environ. 2009, 113, 2089–2102. [Google Scholar] [CrossRef]
- Sun, Z.; Guo, H.; Li, X.; Lu, L.; Du, X. Estimating urban impervious surfaces from Landsat-5 TM imagery using multilayer perceptron neural network and support vector machine. J. Appl. Remote Sens. 2011, 5, 053501. [Google Scholar] [CrossRef]
- Liu, S.; Gu, G. Improving the Impervious Surface Estimation from Hyperspectral Images Using a Spectral-Spatial Feature Sparse Representation and Post-Processing Approach. Remote Sens. 2017, 9, 456. [Google Scholar] [Green Version]
- Wang, P.; Huang, C.; Brown de Colstoun, E. Mapping 2000–2010 Impervious Surface Change in India Using Global Land Survey Landsat Data. Remote Sens. 2017, 9, 366. [Google Scholar] [CrossRef]
- Guo, W.; Lu, D.; Kuang, W. Improving fractional impervious surface mapping performance through combination of DMSP-OLS and MODIS NDVI data. Remote Sens. 2017, 9, 375. [Google Scholar] [CrossRef]
- Franke, J.; Roberts, D.A.; Halligan, K.; Menz, G. Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of hyperspectral imagery for urban environments. Remote Sens. Environ. 2009, 113, 1712–1723. [Google Scholar] [CrossRef]
- Sun, G.; Chen, X.; Jia, X.; Yao, Y.; Wang, Z. Combinational Build-Up Index (CBI) for Effective Impervious Surface Mapping in Urban Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2081–2092. [Google Scholar] [CrossRef]
- Bouziani, M.; Goïta, K.; He, D.-C. Automatic change detection of buildings in urban environment from very high spatial resolution images using existing geodatabase and prior knowledge. ISPRS J. Photogramm. Remote Sens. 2010, 65, 143–153. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Carlson, T.N.; Traci Arthur, S. The impact of land use—Land cover changes due to urbanization on surface microclimate and hydrology: A satellite perspective. Glob. Planet. Chang. 2000, 25, 49–65. [Google Scholar] [CrossRef]
- Wang, Z.; Gang, C.; Li, X.; Chen, Y.; Li, J. Application of a normalized difference impervious index (NDII) to extract urban impervious surface features based on Landsat TM images. Int. J. Remote Sens. 2015, 36, 1055–1069. [Google Scholar] [CrossRef]
- Pok, S.; Matsushita, B.; Fukushima, T. An easily implemented method to estimate impervious surface area on a large scale from MODIS time-series and improved DMSP-OLS nighttime light data. ISPRS J. Photogramm. Remote Sens. 2017, 133, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Bian, J.; Li, A.; Zhang, Z.; Zhao, W.; Lei, G.; Yin, G.; Jin, H.; Tan, J.; Huang, C. Monitoring fractional green vegetation cover dynamics over a seasonally inundated alpine wetland using dense time series HJ-1A/B constellation images and an adaptive endmember selection LSMM model. Remote Sens. Environ. 2017, 197, 98–114. [Google Scholar] [CrossRef]
- Shen, H.F.; Huang, L.W.; Zhang, L.P.; Wu, P.H.; Zeng, C. Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China. Remote Sens. Environ. 2016, 172, 109–125. [Google Scholar] [CrossRef]
- Bian, J.; Li, A.; Wang, Q.; Huang, C. Development of Dense Time Series 30-m Image Products from the Chinese HJ-1A/B Constellation: A Case Study in Zoige Plateau, China. Remote Sens. 2015, 7, 16647–16671. [Google Scholar] [CrossRef] [Green Version]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Zhang, R.; Andam, F.; Shi, G. Environmental and social risk evaluation of overseas investment under the China-Pakistan Economic Corridor. Environ. Monit. Assess. 2017, 189, 253. [Google Scholar] [CrossRef]
- Hassan, A. Pakistan’s Gwadar Port-Prospects of Economic Revival. Master’s Thesis, Nava Postgraduate School, Monterey, CA, USA, 2005. [Google Scholar]
- Bian, J.; Li, A.; Jin, H.; Lei, G.; Huang, C.; Li, M. Auto-registration and orthorecification algorithm for the time series HJ-1A/B CCD images. J. Mt. Sci. 2013, 10, 754–767. [Google Scholar] [CrossRef]
- Lei, G.; Li, A.; Bian, J.; Zhang, Z.; Jin, H.; Nan, X.; Zhao, W.; Wang, J.; Cao, X.; Tan, J.; et al. Land Cover Mapping in Southwestern China Using the HC-MMK Approach. Remote Sens. 2016, 8, 305. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hutengs, C.; Vohland, M. Downscaling land surface temperatures at regional scales with random forest regression. Remote Sens. Environ. 2016, 178, 127–141. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Anderson, T.W.; Mathématicien, E.-U. An Introduction to Multivariate Statistical Analysis; Wiley: New York, NY, USA, 1958; Volume 2. [Google Scholar]
- Behrens, T.; Zhu, A.X.; Schmidt, K.; Scholten, T. Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma 2010, 155, 175–185. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Lin, H. Improving the impervious surface estimation with combined use of optical and SAR remote sensing images. Remote Sens. Environ. 2014, 141, 155–167. [Google Scholar] [CrossRef]
- Zhao, W.; Sánchez, N.; Lu, H.; Li, A. A spatial downscaling approach for the SMAP passive surface soil moisture product using random forest regression. J. Hydrol. 2018, 563, 1009–1024. [Google Scholar] [CrossRef]
- Okujeni, A.; van der Linden, S.; Hostert, P. Extending the vegetation–impervious–soil model using simulated EnMAP data and machine learning. Remote Sens. Environ. 2015, 158, 69–80. [Google Scholar] [CrossRef]
- Fang, K.; Jian-Bina, W.; Zhu, J.; Bang-Changa, S. A review of technologies on random forests. Stat. Inf. Forum 2011, 26, 32–38. (In Chinese) [Google Scholar]
- Heremans, S.; Van Orshoven, J. Machine learning methods for sub-pixel land-cover classification in the spatially heterogeneous region of Flanders (Belgium): A multi-criteria comparison. Int. J. Remote Sens. 2015, 36, 2934–2962. [Google Scholar] [CrossRef]
- Haashemi, S.; Weng, Q.; Darvishi, A.; Alavipanah, S. Seasonal variations of the surface urban heat island in a semi-arid city. Remote Sens. 2016, 8, 352. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, R.; Du, W.; Wang, L.; Lu, D. High-Resolution Urban Land Mapping in China from Sentinel 1A/2 Imagery Based on Google Earth Engine. Remote Sens. 2019, 11. [Google Scholar] [CrossRef]
Satellite | Sensor | Spectrum Range (μm) | Spatial Resolution (m) | Swath Width (km) |
---|---|---|---|---|
GF-1 | panchromatic camera | 0.45–0.90 | 2 | 60 |
GF-2 | 1 | 45 | ||
GF-1 | multispectral camera | 0.45–0.52 0.52–0.59 0.63–0.69 0.77–0.89 | 8 | 60 |
GF-2 | 4 | 45 | ||
HJ-1A/B | CCD (Charge-coupled Device) camera | 0.43–0.52 | 30 | 700 |
0.52–0.60 | ||||
0.63–0.69 | ||||
0.76–0.90 |
No. | Satellite | Date | Cloud | No. | Satellite | Date | Cloud |
---|---|---|---|---|---|---|---|
1 | 1B | 07/03/2009 | 0% | 21 | 1A | 27/02/2014 | 0% |
2 | 1A | 14/06/2009 | 2% | 22 | 1A | 12/06/2014 | 5% |
3 | 1A | 23/09/2009 | 0% | 23 | 1A | 15/10/2014 | 1% |
4 | 1B | 23/12/2009 | 1% | 24 | 1A | 30/12/2014 | 1% |
5 | 1B | 31/01/2010 | 2% | 25 | 1A | 14/01/2015 | 0% |
6 | 1B | 21/05/2010 | 5% | 26 | 1A | 31/03/2015 | 1% |
7 | 1B | 24/10/2010 | 3% | 27 | 1B | 26/10/2015 | 0% |
8 | 1A | 31/12/2010 | 1% | 28 | 1A | 13/12/2015 | 0% |
9 | 1A | 24/01/2011 | 0% | 29 | 1A | 31/01/2016 | 0% |
10 | 1B | 15/05/2011 | 3% | 30 | 1B | 20/06/2016 | 9% |
11 | 1A | 19/10/2011 | 2% | 31 | 1B | 27/10/2016 | 0% |
12 | 1A | 13/12/2011 | 2% | 32 | 1A | 18/12/2016 | 0% |
13 | 1A | 15/02/2012 | 1% | 33 | 1A | 10/02/2017 | 3% |
14 | 1B | 17/06/2012 | 4% | 34 | 1B | 26/04/2017 | 0% |
15 | 1A | 10/10/2012 | 2% | 35 | 1A | 11/06/2017 | 0% |
16 | 1A | 13/12/2012 | 0% | 36 | 1A | 18/10/2017 | 0% |
17 | 1A | 01/01/2013 | 0% | 1 | GF1 | 21/12/2014 | 0% |
18 | 1B | 02/04/2013 | 3% | 2 | GF2 | 02/10/2015 | 1% |
19 | 1B | 16/10/2013 | 0% | 3 | GF2 | 17/02/2016 | 1% |
20 | 1B | 19/11/2013 | 0% | 4 | GF2 | 26/02/2017 | 0% |
Properties | Bands and Index Calculation | Reference |
---|---|---|
Surface Reflectance | BLUE, GREEN, RED, NIR | - |
Spectral indices | Bouziani [21] | |
Gao [39] | ||
Tucker [37] | ||
Huete [38] | ||
Principal Component Analysis | PC1, PC2 | Anderson [40] |
Model | Input Variable | RMSE (%) | R2 |
---|---|---|---|
RF1 | BLUE, GREEN, RED, NIR | 18.33 | 0.43 |
RF2 | BLUE, GREEN, RED, NIR BAI, NDWI, NDVI, SAVI | 15.34 | 0.70 |
RF3 | BLUE, GREEN, RED, NIR BAI, NDWI, NDVI, SAVI PC1, PC2 | 14.51 | 0.74 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, J.; Li, A.; Zuo, J.; Lei, G.; Zhang, Z.; Nan, X. Estimating 2009–2017 Impervious Surface Change in Gwadar, Pakistan Using the HJ-1A/B Constellation, GF-1/2 Data, and the Random Forest Algorithm. ISPRS Int. J. Geo-Inf. 2019, 8, 443. https://doi.org/10.3390/ijgi8100443
Bian J, Li A, Zuo J, Lei G, Zhang Z, Nan X. Estimating 2009–2017 Impervious Surface Change in Gwadar, Pakistan Using the HJ-1A/B Constellation, GF-1/2 Data, and the Random Forest Algorithm. ISPRS International Journal of Geo-Information. 2019; 8(10):443. https://doi.org/10.3390/ijgi8100443
Chicago/Turabian StyleBian, Jinhu, Ainong Li, Jiaqi Zuo, Guangbin Lei, Zhengjian Zhang, and Xi Nan. 2019. "Estimating 2009–2017 Impervious Surface Change in Gwadar, Pakistan Using the HJ-1A/B Constellation, GF-1/2 Data, and the Random Forest Algorithm" ISPRS International Journal of Geo-Information 8, no. 10: 443. https://doi.org/10.3390/ijgi8100443
APA StyleBian, J., Li, A., Zuo, J., Lei, G., Zhang, Z., & Nan, X. (2019). Estimating 2009–2017 Impervious Surface Change in Gwadar, Pakistan Using the HJ-1A/B Constellation, GF-1/2 Data, and the Random Forest Algorithm. ISPRS International Journal of Geo-Information, 8(10), 443. https://doi.org/10.3390/ijgi8100443