As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The interest in the application of AI in medicine has intensely increased over the past decade with most of the changes in the past five years. Most recently, the application of deep learning algorithms in prediction and classification of cardiovascular diseases (CVD) using computed tomography (CT) images showed promising results. The notable and exciting advancement in this area of study is, however, associated with different challenges related to the findability (F), accessibility(A), interoperability(I), reusability(R) of both data and source code. The aim of this work is to identify reoccurring missing FAIR-related features and to assess the level of FAIRness of data and models used to predict/diagnose cardiovascular diseases from CT images. We evaluated the FAIRness of data and models in published studies using the RDA (Research Data Alliance) FAIR Data maturity model and FAIRshake toolkit. The finding showed that although AI is anticipated to bring ground breaking solutions for complex medical problems, the findability, accessibility, interoperability and reusability of data/metadata/code is still a prominent challenge.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.