As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper presents a quantitative evaluation of the power usage over time in data-intensive applications that use MapReduce over MPI. We leverage the PAPI powercap tool to identify ideal conditions for execution of our mini-applications in terms of (1) dataset characteristics (e.g., unique words in datasets); (2) system characteristics (e.g., KNL and KNM); and (3) implementation of the MapReduce programming model (e.g., impact of various optimizations). Results illustrate the high power utilization and runtime costs of data management on HPC architectures.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.