Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T21:42:16.923Z Has data issue: false hasContentIssue false

Glacier elevation and mass changes over the central Karakoram region estimated from TanDEM-X and SRTM/X-SAR digital elevation models

Published online by Cambridge University Press:  03 March 2016

Melanie Rankl*
Affiliation:
Institute of Geography, University of Erlangen–Nuremberg, Erlangen, Germany
Matthias Braun
Affiliation:
Institute of Geography, University of Erlangen–Nuremberg, Erlangen, Germany
*
Correspondence: Melanie Rankl <[email protected]>
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Snow cover and glaciers in the Karakoram region are important freshwater resources for many down-river communities as they provide water for irrigation and hydropower. A better understanding of current glacier changes is hence an important informational baseline. We present glacier elevation changes in the central Karakoram region using TanDEM-X and SRTM/X-SAR DEM differences between 2000 and 2012. We calculated elevation differences for glaciers with advancing and stable termini or surge-type glaciers separately using an inventory from a previous study. Glaciers with stable and advancing termini since the 1970s showed nearly balanced elevation changes of -0.09 ±0.12 m a-1 on average or mass budgets of -0.01 ±0.02Gt a-1 (using a density of 850 kg m-3). Our findings are in accordance with previous studies indicating stable or only slightly negative glacier mass balances during recent years in the Karakoram. The high-resolution elevation changes revealed distinct patterns of mass relocation at glacier surfaces during active surge cycles. The formation of kinematic waves at quiescent surge-type glaciers could be observed and points towards future active surge behaviour. Our study reveals the potential of the TanDEM-X mission to estimate geodetic glacier mass balances, but also points to still existing uncertainties induced by the geodetic method.

Type
Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Author(s) 2016

References

Archer, D and Fowler, H (2004) Spatial and temporal variations in precipitation in the Upper Indus Basin: global teleconnections and hydrological implications. Hydrol. Earth Syst. Sci. 8(1), 4761 (doi: 10.5194/hess-8-47-2004)CrossRefGoogle Scholar
Barrand, NE and Murray, T (2006) Multivariate controls on the incidence of glacier surging in the Karakoram Himalaya. Arct. Antarct. Alp. Res., 38(4), 489498 (doi: 10.1657/1523-0430 (2006)38[489:MCOTIO]2.0.CO;2)CrossRefGoogle Scholar
Berthier, E, Arnaud, Y, Vincent, C and Rémy, F (2006) Biases of SRTM in high-mountain areas: implications for the monitoring of glacier volume changes. Geophys. Res. Lett., 33(8) (doi: 10.1029/2006GL025862)Google Scholar
Berthier, E, Arnaud, Y, Kumar, R, Ahmad, S, Wagnon, P and Chevallier, P (2007) Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sens. Environ., 108(3), 327338 (doi: 10.1016/j.rse.2006.11.017)CrossRefGoogle Scholar
Bolch, T and 11 others (2012) The state and fate of Himalayan glaciers. Science 336(6079), 310314 (doi: 10.1126/science. 1215828)Google Scholar
Clarke, GK, Collins, S and Thompson, D (1984) Flow, thermal structure, and subglacial conditions of a surge-type glacier. Can. J. Earth Sci., 21(2), 232240 (doi: 10.1139/e84-024)Google Scholar
Copland, L and 7 others (2011) Expanded and recently increased glacier surging in the Karakoram. Arct. Antarct. Alp. Res. 43(4), 503516 (doi: 10.1657/1938-4246-43.4.503)Google Scholar
Fritz, T, Rossi, C, Yague-Martinez, N, Rodriguez-Gonzalez, F, Lachaise, M and Breit, H (2011) Interferometric processing of TanDEM-X data. In IGARSS 2011, International Geoscience and Remote Sensing Symposium, 24–29 July 2011, Vancouver, B.C., Canada. Proceedings. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 24282431 (doi: 10.1109/IGARSS.2011.6049701)Google Scholar
Gamma Remote Sensing (2007) GAMMA Differential Interferometry and Geocoding Software (DIFF/GEO). Gamma Remote Sensing, GumligenGoogle Scholar
Gardelle, J, Berthier, E and Arnaud, Y (2012) Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. J. Glaciol., 58(208), 419422 (doi: 10.3189/2012JoG11J175)Google Scholar
Gardelle, J, Berthier, E, Arnaud, Y and Kääb, A (2013) Region-wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999–2011. Cryosphere, 7(4), 12631286 (doi: 10.5194/tc-7-1263-2013)Google Scholar
Gardner, AS and 9 others (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852857 (doi: 10.1126/science.1234532)CrossRefGoogle ScholarPubMed
Goldstein, RM and Werner, CL (1998) Radar interferogram filtering for geophysical applications. Geophys. Res. Lett., 25(21), 40354038 (doi: 10.1029/1998GL900033)CrossRefGoogle Scholar
Groh, A and 11 others (2014) Mass, volume and velocity of the Antarctic ice sheet: present-day changes and error effects. Surv. Geophys., 35(6), 14811505 (doi: 10.1007/s10712-014-9286-y)Google Scholar
Hewitt, K (1969) Glacier surges in the Karakoram Himalaya (central Asia). Can. J. Earth Sci. 6(4), 10091018 (doi: 10.1139/e69-106)CrossRefGoogle Scholar
Hewitt, K (1998) Recent glacier surges in the Karakoram Himalaya, South Central Asia. Eos, 79(8), 104105 Google Scholar
Hewitt, K (2007) Tributary glacier surges: an exceptional concentration at Panmah Glacier, Karakoram Himalaya. J. Glaciol. 53(181), 181188 (doi: 10.3189/172756507782202829)Google Scholar
Hewitt, K (2014) Glaciers of the Karakoram Himalaya: glacial environments, processes, hazards and resources. Springer, Berlin Google Scholar
Hoffmann, J and Walter, D (2006) How complementary are SRTM-X and-C band digital elevation models? Photogramm. Eng. Remote Sens., 72(3), 261268 (doi: 10.14358/PERS.72.3.261)CrossRefGoogle Scholar
Huss, M (2013) Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 7(3), 877887 (doi: 10.5194/tc-7-877-2013)Google Scholar
Immerzeel, WW, Van Beek, LP and Bierkens, MF (2010) Climate change will affect the Asian water towers. Science, 328(5984), 13821385 (doi: 10.1126/science.1183188)Google Scholar
Kääb, A, Berthier, E, Nuth, C, Gardelle, J and Arnaud, Y (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488(7412), 495498 (doi: 10.1038/nature11324)CrossRefGoogle ScholarPubMed
Kääb, A, Treichler, D, Nuth, C and Berthier, E (2015) Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere, 9(2), 557564 (doi: 10.5194/tc-9-557-2015)Google Scholar
Kapnick, SB, Delworth, TL, Ashfaq, M, Malyshev, S and Milly, PCD (2014) Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nature Geosci., 7(11), 834840 (doi: 10.1038/ngeo2269)CrossRefGoogle Scholar
Kaser, G, Großhauser, M and Marzeion, B (2010) Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl Acad. Sci., 107(47), 20 22320 227 (doi: 10.1073/pnas.1008162107)Google Scholar
Kienholz, C, Rich, JL, Arendt, AA and Hock, R (2014) A new method for deriving glacier centerlines applied to glaciers in Alaska and northwest Canada. Cryosphere 8(2), 503519 (doi: 10.5194/tc- 8-503-2014)CrossRefGoogle Scholar
Krieger, G and 6 others (2007) TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Trans. Geosci. Remote Sens., 45(11), 33173341 (doi: 10.1109/TGRS.2007.900693)Google Scholar
Ludwig, R and Schneider, P (2006) Validation of digital elevation models from SRTM X-SAR for applications in hydrologic modeling. ISPRS J. Photogramm. Remote Sens., 60(5), 339358 (doi: 10.1016/j.isprsjprs.2006.05.003)Google Scholar
Marzeion, B, Jarosch, AH and Hofer, M (2012) Past and future sealevel change from the surface mass balance of glaciers. Cryosphere 6(6), 12951322 (doi: 10.5194/tc-6-1295-2012)Google Scholar
Mätzler, C and Schanda, E (1984) Snow mapping with active microwave sensors. Remote Sens., 5(2), 409422 (doi: 10.1080/01431168408948816)CrossRefGoogle Scholar
Mayer, C, Fowler, A, Lambrecht, A and Scharrer, K (2011) A surge of North Gasherbrum Glacier, Karakoram, China. J. Glaciol., 57(205), 904916 (doi: 10.3189/002214311798043834)CrossRefGoogle Scholar
Meier, MF and Post, A (1969) What are glacier surges? Can. J. Earth Sci., 6(4), 807817 (doi: 10.1139/e69-081)Google Scholar
Moholdt, G, Nuth, C, Hagen, JO and Kohler, J (2010) Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sens. Environ., 114(11), 27562767 (doi: 10.1016/j.rse.2010.06.008)Google Scholar
Mölg, T, Maussion, F and Scherer, D (2014) Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nature Climate Change, 4(1), 6873 (doi: 10.1038/nclimate2055)CrossRefGoogle Scholar
Neckel, N, Braun, A, Kropáček, J and Hochschild, V (2013) Recent mass balance of the Purogangri Ice Cap, central Tibetan Plateau, by means of differential X-band SAR interferometry. Cryosphere, 7(5), 16231633 (doi: 10.5194/tc-7-1623-2013)Google Scholar
Neckel, N, Kropáček, J, Bolch, T and Hochschild, V (2014) Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ. Res. Lett., 9(1), 014009 (doi: 10.1088/1748-9326/9/1/014009)Google Scholar
Quincey, DJ, Braun, M, Glasser, NF, Bishop, MP, Hewitt, K and Luckman, A (2011) Karakoram glacier surge dynamics. Geophys Res. Lett., 38, L18504 (doi: 10.1029/2011GL049004)Google Scholar
Radić, V and Hock, R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nature Geosci., 4(2), 9194 (doi: 10.1038/ngeo1052)Google Scholar
Rankl, M, Kienholz, C and Braun, M (2014) Glacier changes in the Karakoram region mapped by multimission satellite imagery. Cryosphere 8(3), 977989 (doi: 10.5194/tc-8-977-2014)Google Scholar
Rignot, E, Echelmeyer, K and Krabill, W (2001) Penetration depth of interferometric synthetic-aperture radar signals in snow and ice. Geophys. Res. Lett., 28(18), 35013504 (doi: 10.1029/2000GL012484)Google Scholar
Scherler, D, Bookhagen, B and Strecker, M. (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geosci., 4(3), 156159 (doi: 10.1038/ngeo1068)Google Scholar
Schiefer, E, Menounos, B and Wheate, R (2007) Recent volume loss of British Columbian glaciers, Canada. Geophys. Res. Lett., 34(16), L16503 (doi: 10.1029/2007GL030780)Google Scholar
Seehaus, T, Marinsek, S, Helm, V, Skvarca, P and Braun, M (2015) Changes in ice dynamics, elevation and mass discharge of Dinsmoor–Bombardier–Edgeworth glacier system, Antarctic Peninsula. Earth Planet. Sci. Lett., 427, 125135 (doi: 10.1016/j.epsl.2015.06.047)Google Scholar
Shuman, CA, Berthier, E and Scambos, TA (2011) 2001–2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula. J. Glaciol., 57(204), 737754 (doi: 10.3189/002214311797409811)Google Scholar
Ulaby, FT, Moore, RK and Fung, AK (1986) Microwave remote sensing, active and passive. Vol. III: From theory to applications. Artech House, Norwood, MA Google Scholar
Werner, C, Wegmüller, U, Strozzi, T and Wiesmann, A (2000) Gamma SAR and interferometric processing software. Proceedings of the ERS–ENVISAT Symposium, Gothenburg, Sweden, 16–20 October 2000. European Space Agency, Noordwijk Google Scholar
Yao T and 9 others (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9), 663667 (doi: 10.1038/nclimate1580)Google Scholar