single-au.php

IJAT Vol.15 No.2 pp. 225-233
doi: 10.20965/ijat.2021.p0225
(2021)

Paper:

Profile Measurement Using Confocal Chromatic Probe on Ultrahigh Precision Machine Tool

Hao Duan*, Shinya Morita*,†, Takuya Hosobata**, Masahiro Takeda**, and Yutaka Yamagata**

*Tokyo Denki University
5 Senju Asahi-cho, Adachi-ku, Tokyo 120-8551, Japan

Corresponding author

**RIKEN Center for Advanced Photonics, Wako, Japan

Received:
January 30, 2020
Accepted:
September 25, 2020
Published:
March 5, 2021
Keywords:
on-machine measurement, ultrahigh precision machine tool, confocal chromatic probe
Abstract

An on-machine measurement (OMM) system is an effective apparatus for achieving an efficient profile compensation and improving machining conditions in ultrahigh precision machining. Herein, we report a new OMM system with a confocal chromatic probe on a five-axis ultrahigh precision machine tool constructed using a real-time position capturing method. The probe and machine tool positions are captured synchronously using a personal computer to generate profile measurement data. Long- and short-term stability, micro step response, and repeatability tests using an optical flat indicates that the system has a precision of approximately ±10 nm. The profile measurement test using a reference sphere indicates that the precision of the OMM system deteriorated at a large slope angle of ±45°. However, the overall accuracy is estimated to be within ±100 nm at a slope angle within ±15°. The linearity test at various slope angles indicates that the decrease in reflected light from a mirror-like surface deteriorates the performance of the probe.

Cite this article as:
H. Duan, S. Morita, T. Hosobata, M. Takeda, and Y. Yamagata, “Profile Measurement Using Confocal Chromatic Probe on Ultrahigh Precision Machine Tool,” Int. J. Automation Technol., Vol.15 No.2, pp. 225-233, 2021.
Data files:
References
  1. [1] A. Bauer and J. P. Rolland, “Visual space assessment of two all-reflective, freeform, optical see-through head-worn displays,” Optics Express, Vol.22, Issue 11, pp. 13155-13163, doi: 10.1364/OE.22.013155, 2014.
  2. [2] T. Hosobata, N. L. Yamada, M. Hino, H. Yoshinaga, F. Nemoto, K. Hori, T. Kawai, Y. Yamagata, M. Takeda, and S. Takeda, “Elliptic neutron-focusing supermirror for illuminating small samples in neutron reflectometry,” Optics Express, Vol.27, Issue 19, pp. 26807-26820, doi: 10.1364/OE.27.026807, 2019.
  3. [3] F. Fang, X. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Annals, Vo.62, No.2, pp. 823-846, doi: 10.1016/j.cirp.2013.05.003, 2013.
  4. [4] H. S. Kim, K. I. Lee, K. M. Lee, and Y. B. Bang, “Fabrication of free-form surfaces using a long-stroke fast tool servo and corrective figuring with on-machine measurement,” Int. J. of Machine Tools and Manufacture, Vol.49, Nos.12-13, pp. 991-997, doi: 10.1016/j.ijmachtools.2009.06.011, 2009.
  5. [5] A. Meier, “Diamond turning of diffractive microstructures,” Precision Engineering, Vol.42, pp. 253-260, doi: 10.1016/j.precisioneng.2015.05.007, 2015.
  6. [6] M. A. Mannan, R. Ramesh, and A. N. Poo, “Error compensation in machine tools – a review. Part I: geometric, cutting-force induced and fixture-dependent errors,” Int. J. of Machine Tools and Manufacture, Vol.40, No.9, pp. 1235-1256, doi: 10.1016/S0890-6955(00)00009-2, 2000.
  7. [7] R. Ramesh, M. A. Mannan, and A. N. Poo, “Error compensation in machine tools – a review. Part II: thermal errors,” Int. J. of Machine Tools and Manufacture, Vol.40, No.9, pp. 1257-1284, doi: 10.1016/S0890-6955(00)00010-9, 2000.
  8. [8] X. Jiang, “Precision surface measurement,” Philosophical Trans. of the Royal Society A, Vol.370, No.1973, pp. 4089-4114, doi:10.1098/rsta.2011.0217, 2012.
  9. [9] E. Savio, L. De Chiffreb, and R. Schmittc, “Metrology of freeform shaped parts,” CIRP Annals, Vol.56, No.2, pp. 810-835, doi: 10.1016/j.cirp.2007.10.008, 2007.
  10. [10] W. L. Zhu, S. Yang, B. F. Ju, J. Jiang, and A. Sun, “Scanning tunneling microscopy-based on-machine measurement for diamond fly cutting of micro-structured surfaces,” Precision Engineering, Vol.43, pp. 308-314, doi: 10.1016/j.precisioneng.2015.08.011, 2016.
  11. [11] W. Gao, J. Aoki, B. F. Ju, and S. Kiyono, “Surface profile measurement of a sinusoidal grid using an atomic force microscope on a diamond turning machine,” Precision Engineering, Vol.31, No.3, pp. 304-309, doi: 10.1016/j.precisioneng.2007.01.003, 2007.
  12. [12] S. Morita, J. Guo, N. L. Yamada, N. Torikai, S. Takeda, M. Furusaka, and Y. Yamagata, “Profile measurement of a bent neutron mirror using an ultrahigh precision non-contact measurement system with an auto focus laser probe,” Measurement Science and Technol., Vol.27, No.7, 074009, doi: 10.1088/0957-0233/27/7/074009, 2016.
  13. [13] F. Chen, S. Yin, H. Huang, H. Ohmori, Y. Wang, Y. Fan, and Y. Zhu, “Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement,” Int. J. of Machine Tools and Manufacture, Vol.50, No.5, pp. 480-486, doi: 10.1016/j.ijmachtools.2010.01.001, 2010.
  14. [14] D. Li, Z. Tong, X. Jiang, L. Blunt, and F. Gao, “Calibration of an interferometric on-machine probing system on an ultraprecision turning machine,” Measurement, Vol.118, pp. 96-104, doi: 10.1016/j.measurement.2017.12.038, 2018.
  15. [15] J. Yan, H. Baba, Y. Kunieda, N. Yoshihara, and T. Kuriyagawa, “Nano precision on-machine profiling of curved diamond cutting tools using a white-light interferometer,” Int. J. of Surface Science and Engineering, Vol.1, No.4, pp. 441-455, doi: 10.1504/IJSURFSE.2007.016695, 2007.
  16. [16] K. Nagayama and J. Yan, “Measurement and Compensation of Tool Contour Error Using White Light Interferometry for Ultra-Precision Diamond Turning of Freeform Surfaces,” Int. J. Automation Technol., Vol.14, No.4, pp. 654-664, doi: 10.20965/ijat.2020.p0654, 2020.
  17. [17] M. Xu, K. Nakamoto, and Y. Takeuchi, “Compensation Method for Tool Setting Errors Based on Non-Contact On-Machine Measurement,” Int. J. Automation Technol., Vo.14, No.1, pp. 66-72, doi: 10.20965/ijat.2020.p0066, 2020.
  18. [18] Y. Ihara and T. Nagasawa, “Fundamental Study of the On-Machine Measurement in the Machining Center with a Touch Trigger Probe,” Int. J. Automation Technol., Vol.7, No.5, pp. 523-536, doi: 10.20965/ijat.2013.p0523, 2013.
  19. [19] X. Zou, X. Zhao, G. Li, Z. Li, and T. Sun, “Non-contact on-machine measurement using a chromatic confocal probe for an ultra-precision turning machine,” The Int. J. of Advanced Manufacturing Technol., Vol.90, pp. 2163-2172, doi: 10.1007/s00170-016-9494-3, 2017.
  20. [20] J. Bai, X. Li, X. Wang, Q. Zhou, and K. Ni, “Chromatic Confocal Displacement Sensor with Optimized Dispersion Probe and Modified Centroid Peak Extraction Algorithm,” Sensors, Vol.19, No.16, 3592, doi: 10.3390/s19163592, 2019.
  21. [21] H. J. Tiziani and H. M. Uhde, “Three-dimensional image sensing by chromatic confocal microscopy,” Applied Optics, Vol.33, No.10, pp. 1838-1843, doi: 10.1364/AO.33.001838, 1994.
  22. [22] H. Duan, S. Morita, T. Hosobata, M. Takeda, and Y. Yamagata, “On-machine measurement of ultra-precision machine tool using confocal chromatic probe,” Proc. of the 32th Japan Society for Abrasive Technology Annual Conf. (ABTEC 2019), pp. 108-113, 2019 (in Japanese).
  23. [23] S. Moriyasu, S. Morita, Y. Yamagata, H. Ohmori, W. Lin, J. Kato, and I. Yamaguchi, “Development of on-machine Profile Measuring System With Contact-type Probe,” Initiatives of Precision Engineering at the Beginning of a Millennium, pp. 594-598, doi: 10.1007/0-306-47000-4_116, 2002.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jan. 19, 2025