@inproceedings{zhang-etal-2018-learning-summarize,
title = "Learning to Summarize Radiology Findings",
author = "Zhang, Yuhao and
Ding, Daisy Yi and
Qian, Tianpei and
Manning, Christopher D. and
Langlotz, Curtis P.",
editor = "Lavelli, Alberto and
Minard, Anne-Lyse and
Rinaldi, Fabio",
booktitle = "Proceedings of the Ninth International Workshop on Health Text Mining and Information Analysis",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5623/",
doi = "10.18653/v1/W18-5623",
pages = "204--213",
abstract = "The Impression section of a radiology report summarizes crucial radiology findings in natural language and plays a central role in communicating these findings to physicians. However, the process of generating impressions by summarizing findings is time-consuming for radiologists and prone to errors. We propose to automate the generation of radiology impressions with neural sequence-to-sequence learning. We further propose a customized neural model for this task which learns to encode the study background information and use this information to guide the decoding process. On a large dataset of radiology reports collected from actual hospital studies, our model outperforms existing non-neural and neural baselines under the ROUGE metrics. In a blind experiment, a board-certified radiologist indicated that 67{\%} of sampled system summaries are at least as good as the corresponding human-written summaries, suggesting significant clinical validity. To our knowledge our work represents the first attempt in this direction."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2018-learning-summarize">
<titleInfo>
<title>Learning to Summarize Radiology Findings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuhao</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daisy</namePart>
<namePart type="given">Yi</namePart>
<namePart type="family">Ding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tianpei</namePart>
<namePart type="family">Qian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Manning</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Curtis</namePart>
<namePart type="given">P</namePart>
<namePart type="family">Langlotz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Ninth International Workshop on Health Text Mining and Information Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Lavelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anne-Lyse</namePart>
<namePart type="family">Minard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="family">Rinaldi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The Impression section of a radiology report summarizes crucial radiology findings in natural language and plays a central role in communicating these findings to physicians. However, the process of generating impressions by summarizing findings is time-consuming for radiologists and prone to errors. We propose to automate the generation of radiology impressions with neural sequence-to-sequence learning. We further propose a customized neural model for this task which learns to encode the study background information and use this information to guide the decoding process. On a large dataset of radiology reports collected from actual hospital studies, our model outperforms existing non-neural and neural baselines under the ROUGE metrics. In a blind experiment, a board-certified radiologist indicated that 67% of sampled system summaries are at least as good as the corresponding human-written summaries, suggesting significant clinical validity. To our knowledge our work represents the first attempt in this direction.</abstract>
<identifier type="citekey">zhang-etal-2018-learning-summarize</identifier>
<identifier type="doi">10.18653/v1/W18-5623</identifier>
<location>
<url>https://aclanthology.org/W18-5623/</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>204</start>
<end>213</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning to Summarize Radiology Findings
%A Zhang, Yuhao
%A Ding, Daisy Yi
%A Qian, Tianpei
%A Manning, Christopher D.
%A Langlotz, Curtis P.
%Y Lavelli, Alberto
%Y Minard, Anne-Lyse
%Y Rinaldi, Fabio
%S Proceedings of the Ninth International Workshop on Health Text Mining and Information Analysis
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F zhang-etal-2018-learning-summarize
%X The Impression section of a radiology report summarizes crucial radiology findings in natural language and plays a central role in communicating these findings to physicians. However, the process of generating impressions by summarizing findings is time-consuming for radiologists and prone to errors. We propose to automate the generation of radiology impressions with neural sequence-to-sequence learning. We further propose a customized neural model for this task which learns to encode the study background information and use this information to guide the decoding process. On a large dataset of radiology reports collected from actual hospital studies, our model outperforms existing non-neural and neural baselines under the ROUGE metrics. In a blind experiment, a board-certified radiologist indicated that 67% of sampled system summaries are at least as good as the corresponding human-written summaries, suggesting significant clinical validity. To our knowledge our work represents the first attempt in this direction.
%R 10.18653/v1/W18-5623
%U https://aclanthology.org/W18-5623/
%U https://doi.org/10.18653/v1/W18-5623
%P 204-213
Markdown (Informal)
[Learning to Summarize Radiology Findings](https://aclanthology.org/W18-5623/) (Zhang et al., Louhi 2018)
ACL
- Yuhao Zhang, Daisy Yi Ding, Tianpei Qian, Christopher D. Manning, and Curtis P. Langlotz. 2018. Learning to Summarize Radiology Findings. In Proceedings of the Ninth International Workshop on Health Text Mining and Information Analysis, pages 204–213, Brussels, Belgium. Association for Computational Linguistics.