@inproceedings{sari-etal-2017-continuous,
title = "Continuous N-gram Representations for Authorship Attribution",
author = "Sari, Yunita and
Vlachos, Andreas and
Stevenson, Mark",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-2043",
pages = "267--273",
abstract = "This paper presents work on using continuous representations for authorship attribution. In contrast to previous work, which uses discrete feature representations, our model learns continuous representations for n-gram features via a neural network jointly with the classification layer. Experimental results demonstrate that the proposed model outperforms the state-of-the-art on two datasets, while producing comparable results on the remaining two.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sari-etal-2017-continuous">
<titleInfo>
<title>Continuous N-gram Representations for Authorship Attribution</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yunita</namePart>
<namePart type="family">Sari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Stevenson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents work on using continuous representations for authorship attribution. In contrast to previous work, which uses discrete feature representations, our model learns continuous representations for n-gram features via a neural network jointly with the classification layer. Experimental results demonstrate that the proposed model outperforms the state-of-the-art on two datasets, while producing comparable results on the remaining two.</abstract>
<identifier type="citekey">sari-etal-2017-continuous</identifier>
<location>
<url>https://aclanthology.org/E17-2043</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>267</start>
<end>273</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Continuous N-gram Representations for Authorship Attribution
%A Sari, Yunita
%A Vlachos, Andreas
%A Stevenson, Mark
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F sari-etal-2017-continuous
%X This paper presents work on using continuous representations for authorship attribution. In contrast to previous work, which uses discrete feature representations, our model learns continuous representations for n-gram features via a neural network jointly with the classification layer. Experimental results demonstrate that the proposed model outperforms the state-of-the-art on two datasets, while producing comparable results on the remaining two.
%U https://aclanthology.org/E17-2043
%P 267-273
Markdown (Informal)
[Continuous N-gram Representations for Authorship Attribution](https://aclanthology.org/E17-2043) (Sari et al., EACL 2017)
ACL
- Yunita Sari, Andreas Vlachos, and Mark Stevenson. 2017. Continuous N-gram Representations for Authorship Attribution. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 267–273, Valencia, Spain. Association for Computational Linguistics.