@inproceedings{padia-etal-2018-team,
title = "Team {UMBC}-{FEVER} : Claim verification using Semantic Lexical Resources",
author = "Padia, Ankur and
Ferraro, Francis and
Finin, Tim",
editor = "Thorne, James and
Vlachos, Andreas and
Cocarascu, Oana and
Christodoulopoulos, Christos and
Mittal, Arpit",
booktitle = "Proceedings of the First Workshop on Fact Extraction and {VER}ification ({FEVER})",
month = nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5527",
doi = "10.18653/v1/W18-5527",
pages = "161--165",
abstract = "We describe our system used in the 2018 FEVER shared task. The system employed a frame-based information retrieval approach to select Wikipedia sentences providing evidence and used a two-layer multilayer perceptron to classify a claim as correct or not. Our submission achieved a score of 0.3966 on the Evidence F1 metric with accuracy of 44.79{\%}, and FEVER score of 0.2628 F1 points.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="padia-etal-2018-team">
<titleInfo>
<title>Team UMBC-FEVER : Claim verification using Semantic Lexical Resources</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ankur</namePart>
<namePart type="family">Padia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Ferraro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Finin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Fact Extraction and VERification (FEVER)</title>
</titleInfo>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Thorne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oana</namePart>
<namePart type="family">Cocarascu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arpit</namePart>
<namePart type="family">Mittal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe our system used in the 2018 FEVER shared task. The system employed a frame-based information retrieval approach to select Wikipedia sentences providing evidence and used a two-layer multilayer perceptron to classify a claim as correct or not. Our submission achieved a score of 0.3966 on the Evidence F1 metric with accuracy of 44.79%, and FEVER score of 0.2628 F1 points.</abstract>
<identifier type="citekey">padia-etal-2018-team</identifier>
<identifier type="doi">10.18653/v1/W18-5527</identifier>
<location>
<url>https://aclanthology.org/W18-5527</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>161</start>
<end>165</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Team UMBC-FEVER : Claim verification using Semantic Lexical Resources
%A Padia, Ankur
%A Ferraro, Francis
%A Finin, Tim
%Y Thorne, James
%Y Vlachos, Andreas
%Y Cocarascu, Oana
%Y Christodoulopoulos, Christos
%Y Mittal, Arpit
%S Proceedings of the First Workshop on Fact Extraction and VERification (FEVER)
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F padia-etal-2018-team
%X We describe our system used in the 2018 FEVER shared task. The system employed a frame-based information retrieval approach to select Wikipedia sentences providing evidence and used a two-layer multilayer perceptron to classify a claim as correct or not. Our submission achieved a score of 0.3966 on the Evidence F1 metric with accuracy of 44.79%, and FEVER score of 0.2628 F1 points.
%R 10.18653/v1/W18-5527
%U https://aclanthology.org/W18-5527
%U https://doi.org/10.18653/v1/W18-5527
%P 161-165
Markdown (Informal)
[Team UMBC-FEVER : Claim verification using Semantic Lexical Resources](https://aclanthology.org/W18-5527) (Padia et al., EMNLP 2018)
ACL