@inproceedings{cho-etal-2024-language,
title = "Can Language Model Moderators Improve the Health of Online Discourse?",
author = "Cho, Hyundong and
Liu, Shuai and
Shi, Taiwei and
Jain, Darpan and
Rizk, Basem and
Huang, Yuyang and
Lu, Zixun and
Wen, Nuan and
Gratch, Jonathan and
Ferrara, Emilio and
May, Jonathan",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.415/",
doi = "10.18653/v1/2024.naacl-long.415",
pages = "7478--7496",
abstract = "Conversational moderation of online communities is crucial to maintaining civility for a constructive environment, but it is challenging to scale and harmful to moderators. The inclusion of sophisticated natural language generation modules as a force multiplier to aid human moderators is a tantalizing prospect, but adequate evaluation approaches have so far been elusive. In this paper, we establish a systematic definition of conversational moderation effectiveness grounded on moderation literature and establish design criteria for conducting realistic yet safe evaluation. We then propose a comprehensive evaluation framework to assess models' moderation capabilities independently of human intervention. With our framework, we conduct the first known study of language models as conversational moderators, finding that appropriately prompted models that incorporate insights from social science can provide specific and fair feedback on toxic behavior but struggle to influence users to increase their levels of respect and cooperation."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cho-etal-2024-language">
<titleInfo>
<title>Can Language Model Moderators Improve the Health of Online Discourse?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hyundong</namePart>
<namePart type="family">Cho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuai</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taiwei</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Darpan</namePart>
<namePart type="family">Jain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Basem</namePart>
<namePart type="family">Rizk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuyang</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zixun</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuan</namePart>
<namePart type="family">Wen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Gratch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emilio</namePart>
<namePart type="family">Ferrara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Conversational moderation of online communities is crucial to maintaining civility for a constructive environment, but it is challenging to scale and harmful to moderators. The inclusion of sophisticated natural language generation modules as a force multiplier to aid human moderators is a tantalizing prospect, but adequate evaluation approaches have so far been elusive. In this paper, we establish a systematic definition of conversational moderation effectiveness grounded on moderation literature and establish design criteria for conducting realistic yet safe evaluation. We then propose a comprehensive evaluation framework to assess models’ moderation capabilities independently of human intervention. With our framework, we conduct the first known study of language models as conversational moderators, finding that appropriately prompted models that incorporate insights from social science can provide specific and fair feedback on toxic behavior but struggle to influence users to increase their levels of respect and cooperation.</abstract>
<identifier type="citekey">cho-etal-2024-language</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.415</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.415/</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>7478</start>
<end>7496</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Can Language Model Moderators Improve the Health of Online Discourse?
%A Cho, Hyundong
%A Liu, Shuai
%A Shi, Taiwei
%A Jain, Darpan
%A Rizk, Basem
%A Huang, Yuyang
%A Lu, Zixun
%A Wen, Nuan
%A Gratch, Jonathan
%A Ferrara, Emilio
%A May, Jonathan
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F cho-etal-2024-language
%X Conversational moderation of online communities is crucial to maintaining civility for a constructive environment, but it is challenging to scale and harmful to moderators. The inclusion of sophisticated natural language generation modules as a force multiplier to aid human moderators is a tantalizing prospect, but adequate evaluation approaches have so far been elusive. In this paper, we establish a systematic definition of conversational moderation effectiveness grounded on moderation literature and establish design criteria for conducting realistic yet safe evaluation. We then propose a comprehensive evaluation framework to assess models’ moderation capabilities independently of human intervention. With our framework, we conduct the first known study of language models as conversational moderators, finding that appropriately prompted models that incorporate insights from social science can provide specific and fair feedback on toxic behavior but struggle to influence users to increase their levels of respect and cooperation.
%R 10.18653/v1/2024.naacl-long.415
%U https://aclanthology.org/2024.naacl-long.415/
%U https://doi.org/10.18653/v1/2024.naacl-long.415
%P 7478-7496
Markdown (Informal)
[Can Language Model Moderators Improve the Health of Online Discourse?](https://aclanthology.org/2024.naacl-long.415/) (Cho et al., NAACL 2024)
ACL
- Hyundong Cho, Shuai Liu, Taiwei Shi, Darpan Jain, Basem Rizk, Yuyang Huang, Zixun Lu, Nuan Wen, Jonathan Gratch, Emilio Ferrara, and Jonathan May. 2024. Can Language Model Moderators Improve the Health of Online Discourse?. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 7478–7496, Mexico City, Mexico. Association for Computational Linguistics.