@inproceedings{das-etal-2019-chains,
title = "Chains-of-Reasoning at {T}ext{G}raphs 2019 Shared Task: Reasoning over Chains of Facts for Explainable Multi-hop Inference",
author = "Das, Rajarshi and
Godbole, Ameya and
Zaheer, Manzil and
Dhuliawala, Shehzaad and
McCallum, Andrew",
editor = "Ustalov, Dmitry and
Somasundaran, Swapna and
Jansen, Peter and
Glava{\v{s}}, Goran and
Riedl, Martin and
Surdeanu, Mihai and
Vazirgiannis, Michalis",
booktitle = "Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)",
month = nov,
year = "2019",
address = "Hong Kong",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5313/",
doi = "10.18653/v1/D19-5313",
pages = "101--117",
abstract = "This paper describes our submission to the shared task on {\textquotedblleft}Multi-hop Inference Explanation Regeneration{\textquotedblright} in TextGraphs workshop at EMNLP 2019 (Jansen and Ustalov, 2019). Our system identifies chains of facts relevant to explain an answer to an elementary science examination question. To counter the problem of {\textquoteleft}spurious chains' leading to {\textquoteleft}semantic drifts', we train a ranker that uses contextualized representation of facts to score its relevance for explaining an answer to a question. Our system was ranked first w.r.t the mean average precision (MAP) metric outperforming the second best system by 14.95 points."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="das-etal-2019-chains">
<titleInfo>
<title>Chains-of-Reasoning at TextGraphs 2019 Shared Task: Reasoning over Chains of Facts for Explainable Multi-hop Inference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rajarshi</namePart>
<namePart type="family">Das</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ameya</namePart>
<namePart type="family">Godbole</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manzil</namePart>
<namePart type="family">Zaheer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shehzaad</namePart>
<namePart type="family">Dhuliawala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">McCallum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dmitry</namePart>
<namePart type="family">Ustalov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Swapna</namePart>
<namePart type="family">Somasundaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Jansen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Goran</namePart>
<namePart type="family">Glavaš</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Riedl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mihai</namePart>
<namePart type="family">Surdeanu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michalis</namePart>
<namePart type="family">Vazirgiannis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our submission to the shared task on “Multi-hop Inference Explanation Regeneration” in TextGraphs workshop at EMNLP 2019 (Jansen and Ustalov, 2019). Our system identifies chains of facts relevant to explain an answer to an elementary science examination question. To counter the problem of ‘spurious chains’ leading to ‘semantic drifts’, we train a ranker that uses contextualized representation of facts to score its relevance for explaining an answer to a question. Our system was ranked first w.r.t the mean average precision (MAP) metric outperforming the second best system by 14.95 points.</abstract>
<identifier type="citekey">das-etal-2019-chains</identifier>
<identifier type="doi">10.18653/v1/D19-5313</identifier>
<location>
<url>https://aclanthology.org/D19-5313/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>101</start>
<end>117</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Chains-of-Reasoning at TextGraphs 2019 Shared Task: Reasoning over Chains of Facts for Explainable Multi-hop Inference
%A Das, Rajarshi
%A Godbole, Ameya
%A Zaheer, Manzil
%A Dhuliawala, Shehzaad
%A McCallum, Andrew
%Y Ustalov, Dmitry
%Y Somasundaran, Swapna
%Y Jansen, Peter
%Y Glavaš, Goran
%Y Riedl, Martin
%Y Surdeanu, Mihai
%Y Vazirgiannis, Michalis
%S Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong
%F das-etal-2019-chains
%X This paper describes our submission to the shared task on “Multi-hop Inference Explanation Regeneration” in TextGraphs workshop at EMNLP 2019 (Jansen and Ustalov, 2019). Our system identifies chains of facts relevant to explain an answer to an elementary science examination question. To counter the problem of ‘spurious chains’ leading to ‘semantic drifts’, we train a ranker that uses contextualized representation of facts to score its relevance for explaining an answer to a question. Our system was ranked first w.r.t the mean average precision (MAP) metric outperforming the second best system by 14.95 points.
%R 10.18653/v1/D19-5313
%U https://aclanthology.org/D19-5313/
%U https://doi.org/10.18653/v1/D19-5313
%P 101-117
Markdown (Informal)
[Chains-of-Reasoning at TextGraphs 2019 Shared Task: Reasoning over Chains of Facts for Explainable Multi-hop Inference](https://aclanthology.org/D19-5313/) (Das et al., TextGraphs 2019)
ACL