Machine Learning Approach for Bottom 40 Percent Households (B40) Poverty Classification
How to cite (IJASEIT) :
EPU, E. P. U. (2013). Tenth Malaysia Plan. Journal of Chemical Information and Modeling, 53(9), 1689-1699. https://doi.org/10.1017/CBO9781107415324.004
Selvaratnam, D. P., Tin, P. B., Bakar, N. A., Idris, N. A. H., & Berma, M. (2017). Social capital accumulation in Malaysia. e-Bangi, 3(1).
Roshaniza, N. A. B. M., & Selvaratnam, D. P. (2015). Gross Domestic Product (GDP) Relationship with Human Development Index (HDI) and Poverty Rate in Malaysia. Prosiding Perkem, 10, 211-217.
Ali, A. F. M., Rashid, Z. A., Johari, F., & Aziz, M. R. A. (2015). The effectiveness of Zakat in reducing poverty incident: An analysis in Kelantan, Malaysia. Asian Social Science, 11(21), 355.
Economic Planning Unit. (2015). Eleventh Malaysia Plan : Anchoring Growth on People. Rancangan Malaysia Kesebelas (Eleventh Malaysia Plan) : 2016-2020.
DOSM. (2017). Department of Statistics Malaysia Press Release Report of Household Income and Basic Amenities Survey 2016, (October). Retrieved from https://www.dosm.gov.my/v1/index.php?r=column/pdfPrev&id=RUZ5REwveU1ra1hGL21JWVlPRmU2Zz09
Holliday, J. D., Sani, N., & Willett, P. (2015). Calculation of substructural analysis weights using a genetic algorithm. Journal of Chemical Information and Modeling, 55(2), 214-221.
Sani, N.S. (2017). The Use of Data Fusion on Multiple Substructural Analysis Based GA Runs. J. Appl. Environ. Biol. Sci., 7(2S)30-36, 2017
Rahman, A. H. A., Ariffinv, K. A. Z., Sani, N. S., & Zamzuri, H. (2017). Pedestrian Detection using Triple Laser Range Finders. International Journal of Electrical and Computer Engineering (IJECE), 7(6), 3037-3045.
Pareek, P., & Prema, K. V. (2012). Classifying the population as BPL or non-BPL using Multilayer Neural Network. International Journal of Scientific and Research Publications, 2(1), 2250-3153.
Zakaria, N. H., Hassan, R., Othman, M. R., Zakaria, Z., & Kasim, S. (2017). A Review on Classification of the Urban Poverty Using the Artificial Intelligence Method. Journal of Asian Scientific Research, 7(11), 450.
Thoplan, R. (2014). Random forests for poverty classification. International Journal of Sciences: Basic and Applied Research (IJSBAR), North America, 17.
Redjeki, S., Guntara, M., & Anggoro, P. (2015). Naive Bayes Classifier Algorithm Approach for Mapping Poor Families Potential. International Journal of Advanced Research in Artificial Intelligence, 4(12), 29-33.
Nataša, P. (2016). Poverty analysis using machine learning methods (Bachelor Thesis). Comenius University, Bratislava, Slovakia.
Terano, R., Mohamed, Z., & Jusri, J. H. H. (2015). Effectiveness of microcredit program and determinants of income among small business entrepreneurs in Malaysia. Journal of Global Entrepreneurship Research, 5(1), 22.
Siwar, C., Idrus, S., Idris, N. D. M., & Zahari, S. Z. Poverty Mapping and Characterizing the Poor Using Geographical Information System: Case Study in Terengganu, Malaysia. [10] Webb, G. I. (2010). Data Preparation. Encyclopedia of Machine Learning, 259-260. https://doi.org/10.1007/978-0-387-30164-8_194
Nawi, N. M., Hussein, A. S., Samsudin, N. A., Hamid, N. A., Yunus, M. A. M., & Ab Aziz, M. F. (2017). The Effect of Pre-Processing Techniques and Optimal Parameters selection on Back Propagation Neural Networks. International Journal on Advanced Science, Engineering and Information Technology, 7(3), 770-777.
Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann.
SamsiahSani, N., Shlash, I., Hassan, M., Hadi, A., & Aliff, M. (2017). Enhancing Malaysia Rainfall Prediction Using Classification Techniques. J. Appl. Environ. Biol. Sci, 7(2S), 20-29.
Zainudin, S., Jasim, D. S., & Abu Bakar, A. (2016). Comparative analysis of data mining techniques for Malaysian rainfall prediction. International Journal on Advanced Science, Engineering and Information Technology, 6(6), 1148-1153.
Patro, S., & Sahu, K. K. (2015). Normalization: A preprocessing stage. arXiv preprint arXiv:1503.06462.
Kurniawan, R., Nazri, M. Z. A., Irsyad, M., Yendra, R., & Aklima, A. (2015, August). On machine learning technique selection for classification. In Electrical Engineering and Informatics (ICEEI), 2015 International Conference on (pp. 540-545). IEEE.
Shreem, S. S., Abdullah, S., & Nazri, M. Z. A. (2016). Hybrid feature selection algorithm using symmetrical uncertainty and a harmony search algorithm. International Journal of Systems Science, 47(6), 1312-1329.
Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16-28.
Alhutaish, R., & Omar, N. (2017). Feature Selection for Multi-label Document Based on Wrapper Approach through Class Association Rules. International Journal on Advanced Science, Engineering and Information Technology, 7(2), 642-649.
Ali, A., Shamsuddin, S. M., & Ralescu, A. L. (2015). Classification with class imbalance problem: A review. International Journal of Advances in Soft Computing and Its Applications, 7(3), 176-204.
Holliday, J., Sani, N., & Willett, P. (2018). Ligand-based virtual screening using a genetic algorithm with data fusion. Match: Communications in Mathematical and in Computer Chemistry, 80, 623-638.
Ferní¡ndez, A., Garcia, S., Herrera, F., & Chawla, N. V. (2018). SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary. Journal of Artificial Intelligence Research, 61, 863-905.
Berend, D., & Kontorovich, A. (2015). A finite sample analysis of the Naive Bayes classifier. Journal of Machine Learning Research, 16, 1519-1545.
Sewaiwar, P., & Verma, K. K. (2015). Comparative study of various decision tree classification algorithm using WEKA. International Journal of Emerging Research in Management &Technology, 4, 2278-9359.
Wager, S., & Athey, S. (2017). Estimation and inference of heterogeneous treatment effects using random forests. Journal of the American Statistical Association.
Song, Y. Y., & Ying, L. U. (2015). Decision tree methods: applications for classification and prediction. Shanghai archives of psychiatry, 27(2), 130.
Thanh Noi, P., & Kappas, M. (2017). Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors, 18(1), 18.
Hu, L. Y., Huang, M. W., Ke, S. W., & Tsai, C. F. (2016). The distance function effect on k-nearest neighbor classification for medical datasets. SpringerPlus, 5(1), 1304.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1), 1929-1958.
Cao, H., Sen, P. K., Peery, A. F., & Dellon, E. S. (2016). Assessing agreement with multiple raters on correlated kappa statistics. Biometrical Journal, 58(4), 935-943.
Refaeilzadeh, P., Tang, L., & Liu, H. (2016). Cross-validation. Encyclopedia of database systems, 1-7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4978658/
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).