Logo des Repositoriums
 
Konferenzbeitrag

Learning causal mechanisms

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2019

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

In machine learning, we use data to automatically find dependences in the world, with the goal of predicting future observations. Most machine learning methods build on statistics, but one can also try to go beyond this, assaying causal structures underlying statistical dependences. Can such causal knowledge help prediction in machine learning tasks? We argue that this is indeed the case, due to the fact that causal models are more robust to changes that occur in real world datasets. We discuss implications of causal models for machine learning tasks, focusing on an assumption of ‘independent mechanisms’, and discuss an application in the field of exoplanet discovery.

Beschreibung

Schölkopf, Bernhard (2019): Learning causal mechanisms. INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft. DOI: 10.18420/inf2019_01. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-688-6. pp. 21-21. Keynote Session. Kassel. 23.-26. September 2019

Schlagwörter

Zitierform

Tags