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Abstract—Pre-trained language models (PLMs) with external
knowledge have demonstrated their remarkable performance
on a variety of downstream natural language processing tasks.
The typical methods of integrating knowledge into PLMs are
designing different pre-training tasks and training from scratch,
which requires high-end hardware, massive storage resources,
and computing time. Prompt learning is an effective approach to
tune PLMs for specific tasks, and it can also be used to infuse
knowledge. However, most prompt learning methods accept one
token as the answer instead of multiple tokens. To tackle this
problem, we propose the long-answer prompt learning method
(KLAPrompt) to incorporate semantic knowledge in Xinhua Dic-
tionary into pre-trained language models. The proposed method
splits the whole answer space into several answer subspaces
according to the token’s position in the long answer. Extensive
experimental results on five datasets demonstrate the effectiveness
of our approach.

Index Terms—semantic knowledge, pre-trained language
model, prompt learning

I. INTRODUCTION

In recent years, pre-trained language models (PLMs) with
external semantic knowledge have shown excellent perfor-
mance on many natural language processing (NLP) tasks,
including named entity recognition [1]–[4], relation extraction
[5]–[8], and machine translation [9]–[12]. However, traditional
approaches of introducing knowledge are mostly training
from scratch, which is time-consuming and computationally
expensive, making it infeasible for most users. Recently,
prompt learning has achieved promising results for certain
few-shot classification tasks [13]–[16], and it can also be
used to integrate knowledge. Xinhua Dictionary [17], the
most authoritative and influential modern Chinese dictionary,
contains massive and comprehensive content such as word-
forms, pronunciations, precise definitions, and rich examples.
As shown in Table I, the “sense” is composed of a long string
of tokens, but the typical methods of prompt learning accept
one token as the answer.

To address this challenge, we propose the long-answer
prompt learning method (KLAPrompt) and collect a word
sense prediction dataset (WSP) based on Xinhua Dictionary
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Word Sense Phrase

order

the way in which
people or things are
placed or arranged
in relation to each
other

in alphabetical order

in chronological order

in descending/ascending order

the state that exists
when people obey
laws, rules or
authority

keep the class in good order

maintain order in the capital

restore public order
a request for food or
drinks in a
restaurant; the food
or drinks that you
ask for

May I take your order?

an order for steak and fries

a side order

TABLE I: An example of the word, senses, and phrases in the
dictionary.

to introduce fine-grained semantic knowledge. Firstly, instead
of considering the long answer as a whole, we split the
answer space into several answer subspaces according to the
token’s position in the long answer. For instance, the answer
subspaces of “order” in Table I are { “the”, “a” }, { “way”,
“state”, “request” }, { “in”, “that”, “for” }, . . . , { “for”}.
Then, we train pre-trained language models on WSP dataset to
predict the sense, and each word of the sense will be predicted
independently.

We conduct comprehensive experiments on five public NLP
datasets. Experimental results demonstrate that pre-trained
language models gain superior performances on the strength
of the semantic knowledge in Xinhua Dictionary. And empir-
ical studies also verify the effectiveness of the KLAPrompt
approach in integrating semantic knowledge.

In a nutshell, the main contributions of our work are as
follows:

1) We introduce more abundant and fine-grained semantic
knowledge in Xinhua Dictionary into the pre-trained lan-
guage models, enhancing the model’s ability to understand
Chinese word semantics.
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Fig. 1: Illustration of KLAPrompt. There are two steps in KLAPrompt: prompt engineering and answer engineering. In prompt engineering,
we use auxiliary virtual tokens [P1], [P2], . . . , [Pl] to replace natural language words. In answer engineering, we split the whole answer space
into several answer subspaces according to the token’s position in the long answer.

2) We propose a novel long-answer prompt learning method
(KLAPrompt), which provide a reasonable solution for two
main challenges for answer engineering: (a) When there are
many classes, how to seek the proper answer space? (b)
How to decode the multi-token answers?

3) Extensive experiments on five Chinese NLP tasks demon-
strate the proposed method significantly empowers the
widely-adopted pre-trained language models. The empirical
studies also confirm that the KLAPrompt with ”sense”
knowledge gains more significant improvement with less
fine-tuning data.

4) We collect a word sense prediction dataset (WSP) based on
Xinhua Dictionary, which is available at https://github.com/
Xie-Zuotong/WSP

II. RELATED WORK

A. Semantic Knowledge

Semantic knowledge contains the meaning of words,
phrases, and sentences, examining how meaning is encoded
in a language. It has been extensively used in various natural
language processing tasks [18]–[21].

ERNIE [22] has improved BERT’s masking strategy to in-
tegrate entity information in the knowledge graph. In Chinese,
an entity or phrase is composed of several Chinese words. If
only a single word is masked, the model can easily predict the
masked content only through the context information, without
paying attention to the composition of phrases and entities, as
well as the syntactic and semantic information in sentences.
Therefore, ERNIE masks all tokens that compose a whole
phrase or entity at the same time. However, the phrase in
ERNIE usually consists of two or three tokens. When the
number of consecutive tokens exceeds twenty, the model is

difficult to train, and the performance will decline. KnowBERT
[23] integrates WordNet [24] and a subset of Wikipedia into
BERT and uses the Knowledge Attention and Recontextualiza-
tion mechanism to explicitly model entity spans in the input
text. SenseBERT [25] adds a masked-word sense prediction
task as an additional task to learn the ”sense” knowledge in
WordNet. WordNet lexicographers organize all word senses
into 45 supersense categories. Hence, it predicts not only the
masked words but also their supersenses during pre-training.
Both KnowBERT and SenseBERT introduce WordNet into
the BERT, but compared with Xinhua Dictionary or Oxford
Dictionary, the supersenses in WordNet are relatively limited,
and the word meaning is coarse-grained.

Furthermore, most of these methods are training from
scratch, which is time-consuming and computationally expen-
sive, making it infeasible for most users.

B. Prompt Learning

Prompt learning is based on the language model used to
calculate the probability of text [26]. Unlike adapting pre-
trained language models to downstream tasks through objec-
tive engineering, prompt learning utilizes additional textual
prompts to make downstream tasks look more like those solved
during the original language model training.

Radford et al. [27] illustrate that language model can
learn NLP tasks without direct supervision, and then prompt
learning has gradually become the most popular research
direction in natural language processing. Prompt learning
includes prompt engineering and answer engineering. For
discrete prompts, Brown et al. [28] manually create prefix
prompts to deal with diverse natural language processing
tasks. For continuous prompts, P-tuning [13] proposes prompts
learned by inserting trainable variables into the embedded
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input. Recent work [14] manually designed the constrained
answer spaces for Named Entity Recognition tasks.

But there are still two challenges for answer engineering: (a)
When there are many classes, how to seek the proper answer
space? (b) How to decode the multi-token answers?

III. METHODOLOGY

In this section, we introduce the KLAPrompt approach
and its detailed implementation. There are two steps in our
KLAPrompt method: prompt engineering and answer engi-
neering. So we elaborate our method from these two aspects.

A. Prompt Engineering

Prompt engineering, also known as template engineering,
is to design a prompting function that results in the most
effective performance on the downstream task. It is based on
the language model used to calculate the probability of text
[29], and it utilizes additional prompts to make downstream
tasks look more like those solved during the original language
model training.

A template is a textual string with two slots: an input slot
[X] for input x and an answer slot [Y]. For example, in the
case of sentiment analysis where x = “I love this movie.”, the
template may take a form such as “[X] Overall, it was a [Y]
movie.”. Then, the prompt would become “I love this movie.
Overall, it was a [Y] movie.”. The number of [X] and [Y] slots
can be flexibly changed for the need of tasks at hand.

In many cases, these template words are not necessarily
composed of natural language tokens; they could be virtual
tokens that would be embedded in a continuous space later
and optimized through gradient descent.

In our work, we use some auxiliary virtual tokens [P1],
[P2], . . . , [Pl], whose parameters are randomly initialized, to
make the template more effective, and l is a predefined hyper-
parameter. This method performs prompting directly in the
embedding space of the model.

The word sense prediction dataset (WSP) contains the word
[W], sense y, and sentence x for each example. For the
continuous prompt in WSP dataset, we first copy the word
[W] mentioned in the sentence x, then add a few auxiliary
virtual tokens followed by the answer slot [Y] that the model
will predict and the input slot [X]. There is an example of
the continuous prompt in Figure 1, and the complete prompt
becomes:

T (x) = [W][P1], [P2], . . . , [Pl][Y].[X] (1)

where T (·) is the template for WSP dataset, [W] is the word
mentioned in the input sentence x, [Pi] is the virtual token, [X]
is the input slot for sentence x, and [Y] is the answer slot for
sense y. Each embedding of prompts is randomly initialized
and optimized during training.

B. Answer Engineering

Unlike prompt engineering, which discovers suitable
prompts, answer engineering tries to seek a proper answer
space and a map to the original output that brings about

an effectual predictive model. For classification-based tasks,
there are two main challenges for answer engineering: (a)
When there are too many classes, how to select an appropriate
answer space becomes a difficult combinatorial optimization
problem. (b) When using multi-token answers, how to best
decode multiple tokens using PLMs remains unknown [26]. In
this section, we propose the long-answer strategy to address
the challenges mentioned above.

In prompt learning, for each class y ∈ Y , the mapping
function ϕ(·) will map it to the answer ϕ(y) ∈ V , where V is
the answer space. It’s easy to find the appropriate answer space
and the mapping function when the classes are limited, and
all the answer consists of a single token. Unfortunately, there
are massive classes in WSP dataset (It includes 7,390 words
and 16,495 senses; each word has one to thirteen senses), and
the answer is quite long sometimes. Take the word “order”
as an example. The template and the label word set can be
formalized as:

T (x) = [W][P1], [P2], . . . , [Pl][MASK]. x

V[MASK] = {“the way in which people or . . . ”,

“the state that exists when . . .”,

“a request for food or drinks . . .”}

(2)

But the pre-trained language model like BERT [29] cannot
predict the whole long answer at once. So in our work, we
split the answer space V[MASK] into several answer subspaces
{V[MASK]1 , V[MASK]2 , . . . , V[MASK]j , . . . , V[MASK]n} according
to the token’s position in the answer, where n is the length of
the answer, and ϕj(y) is to map the class y to the set of label
words V[MASK]j for the j-th masked position [MASK]j . Here
we still take the word “order” as an example. As shown in
Figure 1, the template and the label word set can be formalized
as:

T (x) = [W][P1], . . . , [Pl][MASK]1, . . . , [MASK]n. x

V[MASK]1 = {“the”, “a”}
V[MASK]2 = {“way”, “state”, “request”}
V[MASK]3 = {“in”, “that”, “for”}
V[MASK]4 = {“which”, “exists”, “food”}

. . .

(3)

In a conventional supervised learning system for natural
language processing, we take an input x ∈ X and predict
an output y ∈ Y based on the language model p(y|x). As
the template may contain multiple [MASK] tokens, we must
consider all masked positions to make predictions, i.e.,

p(y|x) =
n∏

j=1

p([MASK]j = ϕj(y)|T (x)) (4)

where n is the number of masked positions in T (x), and ϕj(y)
is to map the class y to the set of label words V[MASK]j for
the j-th masked position [MASK]j . Equation 4 can be used
to tune PLMs and classify classes.



Models STS-B Book Review XNLI Chnsenticorp IFLYTEK

BERT 50.75 86.62 76.8 93.3 60.52

BERT + KLAPrompt 52.92 ↑ 88.63 ↑ 78.61 ↑ 94.82 ↑ 61.58 ↑

RoBERTa 48.23 89.08 78.37 94.85 60.44

RoBERTa + KLAPrompt 50.37 ↑ 91.12 ↑ 80.69 ↑ 95.1 ↑ 61.46 ↑

MacBERT 52.92 88.78 79.05 94.98 60.82

MacBERT + KLAPrompt 54.67 ↑ 90.1 ↑ 81.49 ↑ 95.79 ↑ 62.01 ↑

TABLE II: Experiment results of baselines and our methods on five datasets (Acc.%). “+ KLAPrompt” means that we train PLMs with
KLAPrompt method via semantic knowledge infusion training before fine-tuning.

With the pre-trained language model predicting the masked
tokens, the loss function of KLAPrompt is given by:

L = − 1

|X |
∑
x∈X

log p(y|x)

= − 1

|X |
∑
x∈X

log

n∏
j=1

p([MASK]j = ϕj(y)|T (x))
(5)

IV. EXPERIMENTS

In this section, we present the details of implementation and
conduct experiments on five Chinese NLP datasets to evaluate
the efficiency and effectiveness of our approach.

A. Datasets

STS-B. This Chinese version of the dataset 1 is translated
from the original English dataset STS-B [30] and partially
manually revised. Semantic Textual Similarity (STS) measures
the meaning similarity of sentences.

Book Review. Book Review dataset [31] is collected from
Douban, a Chinese online review website that provides infor-
mation about books, movies, and music. It’s a one-sentence
text classification dataset.

XNLI. In our experiment, only the Chinese part of the
Cross-language Natural Language Inference dataset (XNLI)
[32] is retained. In XNLI, the model should read the two
sentences and determine whether the relationship between
them is “Entailment”, “Contradiction”, or “Neutral”.

Chnsenticorp. Chnsenticorp [31] is a sentiment analysis
dataset which contains 12,000 hotel reviews. 6,000 reviews
are positive, and the other 6,000 reviews are negative.

IFLYTEK. The IFLYTEK [33] dataset has more than
17,000 long texts about the application description, including
various application topics related to daily life with a total of
119 categories.

Datasets above are with 8.05K, 40.0K, 40.0K, 12.0K, and
17.3K samples respectively. We follow the evaluation metrics
and setting used in [31], [33].

1https://github.com/pluto-junzeng/CNSD

Models XNLI

BERT 76.8

- BERT + WSP† 77.34 (+0.54)

- BERT + Continuous Prompt† 77.72 (+0.92)

- BERT + Long-answer Strategy† 78.17 (+1.37)

BERT + KLAPrompt† 78.61 (+1.81)

TABLE III: Ablation study on XNLI dataset (Acc.%). “+ WSP”
means that we train BERT on WSP dataset without the KLAPrompt
approach. † means that we train these models on WSP dataset before
fine-tuning.

B. Implementation Details

KLAPrompt is based on pre-trained language models. In this
work, we choose BERT [29], RoBERTa [34], and MacBERT
[35] as our basic models. For all these models, the number of
layers is 12, the hidden size is 768, the number of heads is 12,
and it contains 110M parameters. These models are optimized
by Adam optimizer [36] with the initial learning rate of 1e-
5. The training batch size is 64. Each model is trained for 10
epochs and evaluated on the validation set for every epoch. All
experiments are carried out using a single NVIDIA GeForce
RTX 3090 24GB card.

C. Main Results

The experimental results on the development set of five
Chinese natural language processing datasets are presented
in Table II. We show each original model and the model
trained with KLAPrompt method (e.g., BERT and BERT +
KLAPrompt). We find that all pre-trained language models
trained with KLAPrompt method have achieved significant im-
provement compared to the original PLMs. For STS-B, Book
Review, and XNLI datasets, RoBERTa + KLAPrompt pushes
up the final results by 2.14%, 2.04%, and 2.32%. And for
IFLYTEK dataset, the method still can raise the accuracy by
more than 1%. This superior performance proves that infusing



Setting l = 1 l = 2 l = 3 l = 4 l = 5

BERT + KLAPrompt 94.24 94.82 94.65 94.57 94.33

TABLE IV: Model performance on Chnsenticorp dataset (Acc.%)
w.r.t. different values of hyper-parameter l.

external semantic knowledge by KLAPrompt approach can
empower the widely-adopted pre-trained language models.

D. Ablation Study

In our proposed KLAPrompt, two components may affect
the performance: Continuous Prompt and Long-answer Strat-
egy. To explore such effects, we conduct an ablation experi-
ment using the XNLI dataset. We first compare BERT with
BERT + WSP to showcase the advantages of external semantic
knowledge in WSP dataset. BERT + WSP is trained on WSP
dataset with its original masked language model (MLM), and
it does not use the KLAPrompt method. Experimental results
demonstrate that introducing semantic information in Xinhua
Dictionary can consistently improve language modeling and
downstream tasks. Then we explore the effects of Continuous
Prompt and Long-answer Strategy. As shown in Table III, both
Continuous Prompt and Long-answer Strategy can improve
performance on this Natural Language Inference dataset. In ad-
dition, the improvement brought by using Continuous Prompt
or Long-answer Strategy alone is less than using the whole
KLAPrompt method.

The hyper-parameter l is the number of virtual tokens in
the continuous prompt. To explore its impact on the perfor-
mance of KLAPrompt, we test with different values of hyper-
parameter l = {1, 2, 3, 4, 5}. As shown in Table IV, we can
see that the performance of the model shows a trend of rising
at first and then falling as l increases. Especially when l = 2,
the model has the best performance.

We also investigate the consistent improvements with differ-
ent percentages of downstream training data. The experiment
results in Figure 2 illustrate that the improvement is more
obvious when the amount of data is smaller. In other words,
KLAPrompt with semantics knowledge can benefit data-scarce
downstream tasks. Because when the training data is limited,
the task depends on the pre-trained language model and the
additional semantics knowledge.

V. CONCLUSION

In this work, we propose the KLAPrompt approach to
introduce semantics knowledge into pre-trained language mod-
els. What’s more, we collect a word sense prediction dataset
(WSP). Extensive experiments on five Chinese NLP datasets
show the effectiveness of KLAPrompt method in integrating
semantic knowledge. For future work, we will infuse common-
sense information, domain-specific information, and knowl-
edge graphs into the pre-trained language models.
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Fig. 2: Performance of BERT and BERT + KLAPrompt method with
different amounts of training data.
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