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Abstract—In the recommended scenario, an unobserved inter-
action may exists in two cases: the user is not interested in the
item or the user is not aware of the item at all. This phenomenon
leads to a serious exposure bias problem in recommendation
system. To solve this problem, we propose Masked Variational
Autoencoder (MVAE). Firstly, we predict the missing values in
the sparse user-item interaction matrix by matrix completion.
Then we randomly mask the elements in the obtained matrix
and use them as the input to the variational autoencoder. The
decoder can reconstruct the user interaction matrix closer to the
true distribution and fully exploit the potential preferences of
users in uninteracted items. In particular, we use a combined
dual VAE to tackle the exposure bias problem from the user side
and the item side respectively. Extensive experiments on three
real-world datasets also illustrate the effectiveness of MVAE for
solving exposure bias in recommendation.

Index Terms—Recommendation System, Exposure Bias, Vari-
ational Autoencoder

I. INTRODUCTION

Recommendation system is a subfield of software engineer-
ing that uses machine learning, data mining and other tech-
nologies to actively show users items they might like during
their browsing interactions[1]. However, user interaction data
is observation-based, the full picture of the data is unknown.
This leads to a serious exposure bias problem. In the actual
scenario, the unobserved sample may exist in two cases, i.e.,
the item does not match the user’s interest or the user doesn’t
know the item at all. After clarifying the causes of exposure
bias, we need to figure out why the existing methods do not
work well to solve the exposure bias problem.

a) Deficiencies in model evaluation: Most Recommen-
dation methods [5] is optimized by randomly sampling among
uninteracted items as negative examples and maximizing the
distance between positive and negative examples. However,
as mentioned above, this optimization approach undoubtedly
exacerbates the exposure bias.

b) Models lack the ability to generate: Traditional self-
supervised approach such as Autoencoder model[12] recon-
structs the data by encoding and decoding operations. But the
users and items are directly mapped into fixed hidden vectors,
the models can’t explore the hidden potential preferences of
uninteracted users sufficiently.

The corresponding author is Neng Gao.

c) Unable to handle missing values in sparse data:
Exposure bias is mainly due to sparse data. Even the generative
model is still insufficient to mine users’ potential interest
preferences from a large number of uninteracted samples.

Hence, we propose the Masked Variational Autoencoder
(MVAE) method to solve the exposure bias problem in the
recommendation. The origin interaction matrix is first com-
plemented by the Singular Value Decomposition(SVD). SVD
maps the users and items into a same vector space and
complements the missing values in the matrix by constructing
links between user items. We mask a random part of pseudo-
matrix and reconstruct the missing elements by VAE. With the
generalization capability of masking and the generation capa-
bility of VAE, we expect to be able to restore the interaction
matrix which is closer to the true distribution. In particular,
we design a combined dual VAE structure that combines the
exposure of items to the user on the user side and the display
of items from the item side.

In summary, our contributions in this paper are as follows:
• To solve the problem that the uninteracted samples con-

tain a large number of potential user preferences due to
data sparsity, we use the SVD method to complete the
matrix, and the obtained matrix is randomly masked to
be the input of VAE.

• We propose a combined dual VAE structure, the user side
is used to predict users’ potential items of interest, while
the item side is used to expose items to interested users,
the two-way design effectively increases the robustness
of the model.

• We conduct experiments on three real-world recommen-
dation scenarios, and the experimental results show that
our method has a better effect of exposure debiasing.

II. RELATED WORK

Research methods for exposure bias can be divided into two
categories: debiasing in evaluation and debiasing in training.

The main approach to eliminate exposure bias in the evalua-
tion phase is to use the propensity score. For example, SNIPS
[11] evaluates the error of implicit feedback data on traditional
metrics such as AUC, DCG@k, Recall@k, and later uses an
inverse propensity score framework to offset the exposure
bias. The current mainstream approaches try to solve this
problem during the training phase of the model. One of them
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Fig. 1. The framework of MVAE, the original interaction matrix is first
complemented by SVD to obtain a pseudo-matrix; the complemented matrix
is then masked and used as input to user-based VAE and item-based VAE
respectively, and the weighted sum of the reconstructed matrices output by
the two decoders is used as the final prediction scoring matrix.

is based on heuristic strategies. For example, user-item feature
similarity [6] has also been used to define the confidence level.
Another type of research route is resampling, some researchers
have explored the use of auxiliary information to augment
the sampler. SamWalker++ [9] adds social networks as auxil-
iary information to the sampling distribution of the model.
Although such methods achieve some debiasing effect, the
addition of auxiliary information increases the data processing
load and the computational complexity of the model.

III. PROBLEM FORMULATION

We start by characterizing the recommendation problem
and introducing notation to be used throughout. In a clas-
sic implicit recommendation scenario, we denote the set of
users as U = {u1, u2, ..., un}, and the set of items as
I = {i1, i2, ..., im}. The history feedback from users to items
can be represented as O = {u, i, Rui}, where Rui indexes
the rating from the user u to the item i. Based on this
interaction set O, we can construct an user-item interaction
matrix R ∈ {0, 1}n×m, where Rui = 1 if the interaction of a
user u and an item i is observed. The rest of the unobserved
samples are denoted by 0 as Rui = 0. The intention of
the recommendation system is to predict whether a user is
interested in a candidate item that he has not interacted with
before. Our goal is to learn a prediction function to calculate
the probability that user u will click item i.

IV. METHODOLOGY

In this section, we illustrate the proposed MVAE in detail.
The overall architecture of the model is shown in Fig. 1.

A. Matrix Completion

First of all, we use matrix factorization to complete the
matrix. That is, we fill the elements of the matrix that have
not generated records (unobserved data) based on the existing
data in the matrix (observed data). Here we choose Singular
Value Decomposition (SVD) as the matrix completion method.
Interaction matrix R can be linearly combined by two smaller
matrices according to the SVD principle.

R = PQT (1)

here the original interaction matrix is decomposed into users
features matrix P and item features Matrix Q. In the decom-
posed matrix, each user and item is represented as a feature
vector consisting of K features f . The P and Q matrices are
obtained by training in the learning process, and a loss function
is defined as:

E=
1

2

n∑
i=1

m∑
j=1

Iij(Rij−p(Pi, Qj))
2+

ki
2

n∑
i=1

∥Pi∥2+
kj
2

m∑
j=1

∥Qj∥2

(2)
where p(Pi, Qj) represents the prediction score of user i
and item j. The prediction function p is the dot product
p(Pi, Qj) = PiQ

T
j . I ∈ {0, 1}n×m in Eq. (3) is an indicator

of whether the corresponding position has a interaction. The
last two terms on the right side of the equation are the
regularization terms to prevent overfitting. After training, we
can complete the missing values in the original matrix by
the product of matrices P and Q. However, the value of the
complement here is based on predictions, which is still not the
exact true value. We temporarily call it the pseudo-matrix R′.

B. Stochastic Masks

We mask the pseudo-matrix R′ in order to further increase
the generalization capability of the model. To be specific,
we divide the matrix into submatrices at random in a certain
ratio. Then we sample one of the submatrices and mask the
remaining submatrices. Here we directly set the values of these
positions to 0. Our sampling strategy is simple: we randomly
sample the elements of the matrix without replacement accord-
ing to a uniform distribution. Random sampling on the one
hand largely eliminates redundancy, and on the other hand
guides the model in learning which values are true in our
pseudo-matrix R′.

C. Variational Autoencoder

The variational autoencoder(VAE) reconstructs the matrix
by mapping the original data into a standard normal distri-
bution and desampling a representation from the distribution
for decoding. For ease of exposition, the input is uniformly
denoted by x. In terms of a probabilistic model, the encoder
can also be defined by the parametrized posterior distribution
p(z|x). Here we use the SVD to complement the original
matrix and mask some of the values to obtain a new x. Then
the encoder fits p(z|x) based on x. The value of the matrix
complement guides us to discover which of the unobserved
samples are potentially positive, and by assigning values to
them we obtain an x distribution that is closer to the true dis-
tribution. However, since the posterior probability distribution
is difficult to solve in probabilistic models, for each data point
we need to approximate the intractable posterior distribution
p(z|x). Therefore, we need to use variational inference [3].
Variational inference maximizes the approximation of the orig-
inal posterior distribution by a simple variational distribution
q(z). We set q(z) to be a fully factorized (diagonal) Gaussian
distribution:

q (z) = N
(
µ,diag

{
σ2

})
(3)



Then the distribution is parametrized by θ with both mul-
tivariate functions µθ(x) and σ2

θ(x) being K-vectors and sets
the variational distribution as follows:

qθ(z, x) = N
(
µθ(x), σ

2
θ(x)

)
(4)

The encoder of VAE uses the masked x as input and derives
the corresponding variational parameters of the variational
distribution qθ(z, x) by the inference model.

VAE’s decoder model can be viewed as a generative model
pξ(x|z), sampling a z from the distribution fitted by the
encoder and then reconstructing the original vector x. Ac-
cording to the method of learning latent variable models by
variational inference, we can calculate the Evidence Lower
Bound (EBLO) of the data, that is, the final derivation in Eq.
(5). We use it as the objective to seek maximization of the
VAE reconstruction results.

log p (x; ξ) ≥ Eqθ(z|x) [log pξ (x|z)]−KL (qθ (z) ∥p (z)) (5)

Then we use the reparametrization trick by introducing
the regularization hyperparameter β to control the trade-
off between the regularization term (i.e., KL loss) and the
reconstruction loss. Thus the loss function of the VAE is as
follows:

Lβ (x; ξ, θ)=Eqθ(z|x)[log pξ (x | z)]−β ·KL (qθ (z | x) ∥p (z))
(6)

VAE makes flexible use of variational inference, and gen-
erates data to answer relevant new questions. The ability to
generate inference in this way can help us to better address
the problem of exposure bias by exploring the missing values
in the interaction matrix together with the mask operation.

D. Combined uVAE and iVAE

We construct a combined model of user-based VAE(uVAE)
and item-based VAE(iVAE). The joint optimization of these
two VAEs contributes to their fine-tuned calibration, and to-
gether uVAE and iVAE can learn complementary information
from the user’s interaction with the item. For the user-item
interaction matrix R, the uVAE reconstructs the matrix row-
by-row, while the item VAE reconstructs it column-by-column.
The final predicted output:

R̂ = αR̂u + (1− α)R̂i (7)

where R̂u and R̂i are the uVAE’s and iVAE’s output recon-
struction matrices, respectively. Here we follow the experimen-
tal setup of the joint method described above, taking α = 0.5.
According to Eq. (9), we add the loss functions of uVAE and
iVAE as the total loss function of our MVAE model:

LMVAE(R | ξ, β)=
∑
u∈U

LVAE (Ru | ξu, β) +
∑
i∈I

LVAE

(
RT

i |ξi,β
)

(8)
where ξu and ξi represent the model parameters of uVAE

and iVAE, respectively. It should be noted that, unlike the
traditional implicit feedback recommendation algorithms, we
do not use the pairwise BPR ranking loss which is optimized

by maximizing the distance between positive and negative
examples. As mentioned above, the negative cases randomly
sampled from the uninteracted samples are not necessarily
negative, so the loss will inadvertently increase the exposure
bias. We use the self-supervised VAE model and optimize the
reconstruction loss in a way that can effectively avoid this
phenomenon.

V. EXPERIMENTS

In this section, we evaluate our proposed model MVAE and
present its performance on three real-world datasets.

TABLE I
STATISTICS OF THE DATASETS

Movielens1M Yelp Pinterest
#Users 6,027 12,705 55,187
#Items 3,062 9,245 9,911
#Interaction 574,026 318,314 1,500,806
#Sparsity 96.89% 99.73% 99.73%

A. Datasets

To evaluate the effectiveness of our model, We conduct
experiments based on three real-world datasets. Basic statistics
of the datasets are summarized in Table I. Movielens1M is a
widely used benchmark dataset in movie recommendations,
Yelp is a subset of Yelp’s businesses, Pinterest is an image
based content social networking site. Following the previous
work [2], [13], we keep only users and items with at least 20
interactions to single out good quality data from the original
dataset by using above setting.

B. Baselines

To testify the effectiveness of our method, we compare
MVAE against state-of-the-art methods: BPR[8] is a matrix
decomposition-based model with a pair-wise ranking loss.
CDAE[10] is a neural network version of SVD. NCF [5]
combines a neural version of the MF model (GMF) with
a multilayer perceptron (MLP) model. Mult-VAE[7] ex-
tends variational autoencoder (VAE) to collaborative filtering
with implicit feedback. FAWMF[4] proposes a fast adaptive
weighting matrix decomposition based on a variational au-
toencoder in order to achieve adaptive weight assignment for
exposure debiasing. JCA [13] proposes a joint collaborative
autoencoder framework that learns both user-user and item-
item correlations. JoVA [2] is a variant of JCA and uses the
generative power of VAE for effective exposure debiasing.

C. Evaluation Protocols and Parameters

We utilize two commonly-used metrics to assess the quality
of predicted ranked list for each user u: F1-Score@K and
NDCG@K. We report the average of these metrics (over
testing users). We optimize our model with Adam, and set
the learning rate to 0.003. For the training data of each batch,
we decompose the matrix into 1500× 1500 submatrices. The
hyperparameters were set as: β = 0.15, α = 0.5. The mask
ratio is 4% for each epoch. For each encoder and decoder in
the VAE, we have two hidden layers, each of dimension size



TABLE II
OVERALL PERFORMANCE ON MOVIELENS1M, YELP AND PINTEREST

Method
Movielens1M Yelp Pinterest

F1-score NDCG F1-score NDCG F1-score NDCG
@1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10

BPR .041 .129 .170 .284 .255 .243 .007 .018 .022 .017 .022 .030 .012 .029 .033 .033 .031 .041
CDAE .052 .147 .187 .343 .290 .273 .016 .032 .036 .038 .039 .047 .015 .035 .040 .042 .039 .051
NCF .051 .149 .188 .296 .273 .271 .015 .033 .035 .037 .039 .050 .012 .031 .038 .038 .035 .048

Mult-VAE .052 .142 .180 .343 .289 .270 .015 .032 .034 .035 .038 .047 .015 .035 .040 .047 .040 .050
FAWMF .060 .166 .207 .378 .318 .299 .015 .029 .031 .036 .036 .043 .013 .031 .036 .042 .036 .045

JCA .060 .163 .208 .370 .313 .298 .016 .035 .038 .041 .044 .054 .015 .038 .046 .045 .042 .056
JoVA .061 .167 .212 .372 .314 .301 .020 .039 .040 .045 .048 .058 .020 .047 .054 .058 .052 .064

MVAE .063 .170 .215 .383 .320 .307 .019 .039 .042 .043 .050 .060 .024 .051 .059 .063 .055 .070

320, and the activation function used is tanh. the dimension
of the potential space d is set to 80. the final output layer uses
the sigmoid activation function. We train all the models on a
single NVIDIA Tesla A100 GPU for 200 epochs.

D. Overall Performance

Table II reports F1-Score and NDCG for all datasets
and methods. Each metric is averaged across all test users.
MVAE significantly outperform the baselines across datasets
and metrics. On the Movielens1M dataset, we have made some
significant improvements over the optimal baseline algorithm
JOVA, especially in the NDCG@K evaluation metric. This
is mainly because MVAE takes the masked complementary
matrix as input and assign different propensity scores to
those potential points of interest. The improvement on the
Pinterest dataset was significant, with the best metric improv-
ing by 9.375% (NDCG@10). The minimum improvement is
5.769%(NDCG@5). However, we also note that the result of
K = 1 metric is sub-optimal on the Yelp dataset. Probably
because the number of items in Yelp is too large and it
is not as efficient when exposing unseen items. But as K
increases, our effect improves and becomes optimal. This
also suggests that our model gradually increases the exposure
of items, which will further improve the recommendation
results as the feedback loop of the recommendation system
progress. Overall, these results indicate that MVAE achieves
better exposure debiasing results than traditional methods and
significantly improves the accuracy of the recommendations.

E. Study on MVAE Structure

Fig. 2. Test performance of uVAE, iVAE and MVAE in three datasets.

In this section, we conduct ablation studies on uVAE and
iVAE separately to demonstrate that our combined model is
effective. Fig. 2 illustrates the results. From the experimental
results, it can be seen that MAVE improves significantly over
both uVAE and iVAE by coupling the dual VAEs from the
user side and the item side. It indicates that uVAE and iVAE

generate different recommendations which are complementary
to each other.

VI. CONCLUSION

In this work, we propose a dual Variational Autoencoder
with stochastic masks to solve exposure bias in recommen-
dation. Experiments on three real world datasets confirm the
effectiveness of our model.
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