
Modeling of Interlocking Systems based on Patterns

Wang Yan, Zhong Wen, Xiaohong Chen*, Dehui Du

Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai

*corresponding author, xhchen@sei.ecnu.edu.cn

Abstract—The equipment faults of the interlocking system in rail

transit system has occurred frequently, and these faults can cause

serious accidents. The modeling of the interlocking system must

aim at the stochasticity and real-time characteristics of equipment

faults. Therefore, this paper proposes to model the interlocking

system using stochastic hybrid automata. In order to improve

model efficiency, we try to extract the pattern of the interlocking

system model, and reuses these patterns in system modeling. The

main contributions include: (1) Based on the business analysis of

the interlocking system, 12 model patterns of the interlocking

system are extracted; and (2) the modeling process of the

interlocking system based on patterns reuse is given to guide

system modeling. Finally, a case study is presented to illustrate the

feasibility and effectiveness of our approach.

Keywords-Interlocking system; Pattern reuse; Stochastic hybrid

automata; Modeling; UPPAAL-SMC

I. INTRODUCTION

The safety of rail transit systems is of great importance.
However, in recent years, railway accidents happen from time to
time. For example, July 23, 2011 Yong Wen line "7.23" major
railway traffic accident. This is a serious accident caused by the
design flaws of the equipment in the control center, inadequate
checks on the road, and ineffective emergency response after
equipment failure which caused by lightning. The accident led
to a rear-end train collision, and caused 40 deaths, 172 injuries,
and the direct economic losses of 19371.65 million RMB [1].

The interlocking system is one of the core subsystems in the
rail transit system [2]. It has SIL4-level safety requirements,
complex logic, and high requirements for real-time performance
[3] [4]. It can endanger the safety of the vehicle when a failure
occurs. Therefore, modeling and analyzing the interlocking
system become very important and is one of the key methods to
ensure system safety.

The interlocking system is composed by various equipment.
The main cause of most accidents in interlocking system is
equipment failure which is stochastic. For example, lightning
strike causes the short circuit of track and leads to an accident.
Therefore, we should consider the stochastic characteristic of
equipment faults when modeling. Stochastic Hybrid Automata
(SHA) [5] offers stochasticity and time modeling, and has been
widely used in various fields such as electromechanical systems,
computer simulation, automata and so on [6]. In this paper, we
take the time constraints into consideration and propose to use
SHA to construct the system model for verification. Considering

10.18293/SEKE2018-138

the modeling and verification, we choose the platform
UPPAAL-SMC [7] for modeling and analysis.1

In order to facilitate the construction of rail transit system
model, we extract the patterns of the system model for the
interlocking system. Using these patterns, one only needs to fill
in the appropriate parameters to customize the specific system
model. The final customized system model is verified.

The rest of this paper is organized as follows. Section II
presents the framework of our approach; Section III gives the
method for constructing the system model patterns and Section
IV clarifies pattern based system model generation method; a
case study is given in section V and the related work follows in
section VI. Finally, Section VII concludes the paper.

II. FRAMEWORK OF OUR APPROACH

The purpose of railway interlocking system is to control
points and signal lights to prevent trains from collisions and
derailments [8], while allowing its movement. The processing
flow of the interlocking system is on
https://github.com/wymgal/IS.git (for simplicity, we will refer it
as our website in the following). Generally speaking, the
physical domain of an interlocking system consists of 5 entities,
tracks, points, signal lights, routes, and interlocking table. The
tracks are divided into sections, and each section is associated
with a circuit for detecting whether it is occupied or not. Track
sections are joined by points which can guide trains into different
directions depending on the positions of the points. A point can
be in position normal or reverse, as well as unlocked to show
that the tracks are unconnected at the crossing. Signal lights are
placed between track sections and use red or green color to
indicate proceed or stop signal respectively. Routes are
established for authorizing a train to enter. It is often defined by
interlocking table, which includes the conditions for locking and
releasing the train route and for when the entry signals of the
route is set to show proceed or stop signal.

According to the above descriptions, we get a context
diagram of interlocking system, as shown in Figure 1. The
system contains six entities, Train, Signal Light, Point, Track,
Interlocking Table and the Controller. Except Controller, we
name the other five entities the environment of the interlocking
system. The environment interacts with the Controller. The
interactions are the shared message between the Controller and
the environment entities.

Based on the context diagram, we give a framework of our

https://github.com/wymgal/IS.git

Train

Signal Light

Track

Interlocking Table

Point

Controller

trainEnter
trainLeave

request

checkoccupied

occupied
unoccupied

checktable

result

dolock
dounlock

turnLock
turnUnlock

dogreen
dored

turnGreen
turnRed

turnGreen
turnRed

Fig.1 Context diagram of the interlocking system

approach as shown in Figure 2. Firstly, we extract the system
pattern from the domain knowledge of the interlocking system.
The system pattern consists of two parts: the environment
patterns and the controller patterns. Based on the extracted
system model, a system model is generated in combination with
a model parameter table. The generated system model is
simulated on the UPPAAL-SMC platform to verify the
properties of the system.

Center

System patterns

Controller patterns

Environment patterns

Train[i]

Point[i]

Track[i]Signal Light[i]

Interlocking table[i]

run on

System Model

Controller
control

b
monitor

a

Environment

UPPAAL-SMC

generate

Parameter List

Fig.2 Framework of our approach

The environment patterns include the models of each
environmental entity of the interlocking system, such as Train,
Point, Interlocking Table, Signal Light, and Track. The
controller patterns are also defined. Model parameter list is the
key to realize the reusability which is given by domain experts.
Using parameters in the parameter list, the extracted system
patterns can be instantiated to generate a specific system model.

III. INTERLOCKING SYSTEM MODEL PATTERNS

A. Constructing process

Firstly, we give a 3-step process to obtain the SHA of each
system entity. The three steps are constructing the basic
automata, modeling faults, and adding time constraints.

Step 1: Constructing the basic automata
The process description related to the entity is found

according to the system processing flow and system context
diagram, including all the behaviors related to the entity.

We give a guideline to get a basic automata of each entity.
Each time the entity sends or receives a message (action), the
entity's automata moves from one state to another state.

Therefore, an action of each entity is transformed into a state and
a transition in a basic automata. The transition is an action.

Step 2: Modeling faults

In the entities, it is possible that the occurrence of an

abnormal event can lead to a fault, and an abnormal event can be

represented by the probability. Therefore, we find all the

abnormal events, and use stochastic probability events to express

them. Different events are performed with different probabilities.

Based on the basic automata, stochastic probability events are

added to model faults.

Step 3: Adding time constraints

This step is to add time constraints on the results of step 2.

Firstly, the time constraints of entities are extracted from the

domain experts and expressed as <message1, message2, <=n

time unit>. Then, the corresponding clock variable x are defined.

The representation of the clock constraint in the automata is the

time between message1 and message2, that is, in the automata,

the initial value of clock variable x on the "update" of message1

is 0, and the inequality x<=n of the clock variable is defined in

the "guard" of the message2.

B. Environment entity patterns

a) Train Pattern
We obtain the processing flow of the train entity from the

system processing flow. When the train enters the track, it sends
a request signal to the controller and waits for the signals of
signal lights. If the train is accepted within the stipulated time, it
enters the track. If rejected, it stops and waits. According to the
guideline, a basic automata of the train entity is obtained.

A fault may occur during the train running, that is, between
sending "trainEnter" message and sending "trainLeave" message.
Add an error state to the automata. Message sent from
"trainEnter" is transferred to the error state with the probability
of m% and transferred to the starting point of "trainLeave"
message with the probability of n%, where, m + n = 100, m and
n are real numbers, and are decided by domain experts.

The time constraints are obtained from domain experts as
follows. The not-all-lights-green signal "notallgreen" is received
within specified time. The all-lights-green "allgreen" is received
within specified time. The clock variable x is defined to indicate
the waiting time for the signal light, that is, the time from
sending "request" message to receiving "notallgreen" message
or "allgreen" message. Therefore, the initial value of x on the
"update" of the "request" transition is 0, and the inequality "x<z"
(z is a constant) is used as the "guard" of transition "notallgreen"
or "allgreen". Therefore, the SHA pattern of the train is obtained,
as shown in Figure 3(a).

b) Signal Light Pattern
We divide the activities involved in Signal Light into two

parts. One is SSignalLight, which is responsible for setting the
status of the signal light. The other part is RSignalLight, which
is responsible for inquiring the status of the signal light.

Signal Light = SSignalLight||RSignalLight

SSignalLight: We get the processing flow of the SSignalLight

from the system processing flow. The initial state of the Signal

Light is red. After receiving the commands of the controller, the

signal light changes its state. According to the guideline, the

(e) Interlocking Table

(a) Train (c) Point

(b) SSignalLight (d) STrack

Fig.3 SHA patterns of environment entities

basic automata of the SSignalLight is obtained (see our website).

A fault may occur during the change of the signal lights’ states,
that is, between receiving "dogreen" message and sending
"turnGreen" message or between receiving "dored" message and
sending "turnRed" message. Add an error state to the automata.
Message sent from "dogreen" is transferred to the error state with
the probability of m% and transferred to the starting point of
"turnGreen" message with the probability of n%. Similarly, we
can model faults in the situation where the signal light changes
from green to red.

The time constraints are obtained are as follows. There is a
certain delay in the state change of Signal Light. A local clock a
is given to indicate the delay time of signal light changing from
red to green, and a clock b indicates the delay time of signal
changing from green to red. The initial value on the "update" of
the "dogreen" transition is 0, and the inequality "a>1" is used as
the "guard" of the transition. Similarly, we can define the clock
b in this automata. The SHA of the SSignalLight is thus obtained,
as shown in Figure 3(b).

RSignalLight: In order to get a set of single light states, we

first model one single light. According to the system processing

flow, we can get the processing flow of the RSignalLight.

According to the guideline, we build an automata for one signal

light as shown in Figure 4.

For a group of lights, the modeling process is based on the
situation of one signal light. Add the corresponding different
signal lights' green identifier isLightGreen and the red light
identifier isLightRed. For N signal lights, there should be n

Fig.4 SHA pattern of RSignalLight for querying single signal light

isLightGreen[0,1,...,n-1] and isLightRed[0,1,...,n-1]. Add n
transitions with the message of "turnGreen[n-1]?" from the
initial state to itself. Make isLightRed[n-1]=1. The judgement
condition of transition "allgreen!" is: isLightGreen[0]==1&&is-
LightGreen[1]==1&&...&&isLightGreen[n-1]==1. Similarly,
we change the judgement condition of transition "notallGreen",
transition "allred" and transition "notallred". The automata for a
group of signal lights is in our website. We do not consider the
error situation and the time constraints of RSignalLight.

c) Point Pattern
We can get the processing flow of the point entity from the

system processing flow. The initial state of the Point is unlocked.
When the point receives commands from the controller, the
point changes its state. There is a certain delay in the state change
of the point entity. According to the guideline, a basic automata
of the point is obtained as shown in our website.

https://github.com/wymgal/IS/issues
https://github.com/wymgal/IS/issues
https://github.com/wymgal/IS/issues

A fault may occur during the point changing from the locked
state to the unlocked state or from the unlocked state to the
locked state, that is, between receiving "dolock" message and
sending "turnLock" message or between receiving "dounlock"
message and sending "turnUnlock" message. Add an error state
to the basic automata. Message sent from "dolock" is transferred
to the error state with the probability of m% and transferred to
the starting point of "turnLock" message with the probability of
n%. Similarly, we can model faults in the situation where the
point changing from locked state to the unlocked state.

The time constraint for point entity is that there is a certain
delay in the state change of the point. The local clock a is defined
to indicate that the delay time of the point changing from
unlocked state to locked state, and the local clock b indicates the
delay time of the point changing from locked state to unlocked
state. That is, clock a is the time from receiving "dolock"
message to the next state lock. Therefore, the initial value of a
on the "update" of the "dolock" transition is 0, and the inequality
"a>1" is used as the "guard" of the transition. Similarly, we can
define the clock b. The SHA of the point is thus obtained, as
shown in Figure 3 (c).

d) Track Pattern
We divide activities involved in Track into two parts. One is

STrack, which is responsible for setting the status of the Track.
The other part is RTrack, which is responsible for inquiring the
status of the Track. So we get: Track=STrack||RTrack

STrack: The processing flow of the STrack is extracted from

the system processing flow. After receiving commands from the

controller, the track check whether it is occupied and return the

results to the controller. According to the guideline, a basic

automata is obtained (see our website).
A fault may occur during the process of setting the track state,

that is, between receiving "trainEnter" message and receiving
"trainLeave" message. Add an error state to the automata.
Message sent from "trainEnter" is transferred to the error state
with the probability of m% and transferred to the starting point
of "trainLeave" message with the probability of n%.

The method of adding transition with a probability is similar
with the case of the train entity. Without taking the time
constraints of track entity into account, we do not extract time
constraints. The SHA of STrack is obtained by the above steps,
as shown in Figure 3 (d).

RTrack: It is finished in two steps. One is for one track. We

build an SHA model for one track, as shown in our website. The

other one is for a group of tracks. The processing is similar with

RSignalLight. We only need to change the judgment conditions

and transitional messages.

e) Interlocking Table Pattern
According to the system processing flow, the processing

flow of the Interlocking Table entity is obtained. After receiving
the query command from the controller, the interlocking table
queries the related information and returns results. According to
the guideline, the automata of the interlocking table is obtained
as shown in Figure 3(e). We do not consider the error situation
and time constraints of the interlocking table entity.

C. Controller Pattern

The controller is divided into two parts. One is the Center
which is responsible for controlling all the tracks, points, signal
lights, trains and the interlocking table. The other part called
Submodules, which is in charge of controlling each track, point,
signal light and train respectively. So we define:

Controller=Center||Submodules

Submodules=CTrack||CPoint||CSignalLight||Dispatcher

Center: The processing scenario of the Center is extracted
as expressed in our website. According to the guideline, the basic
automata of the Center is obtained as shown in Figure 5.

Fig.5 A Center Pattern

In the global declaration, we define 8 functions required by
Center to interact with each entity. They are send_routeID,
getRouteID, send_trackID, getTrackID, send_pointInfo,
getPointInfo, send_lightID, and getLightID. Their functions are
the meaning of their name. Due to limited space, the exact
definition is shown in our website.

CTrack, CPoint, and CSignalLight: The CTrack is
responsible for sending "checkoccupied" message to each track,
and checking the occupancy situation of each track. After
receiving the instruction of Center, the CPoint sends "dolock"
and "dounlock" message to each point. After receiving
instruction from Center, the CSignalLight sends "dogreen" and
"dored" message to each signal light. The construction process
of CTrack, CPoint, CSignalLight are similar to the construction
process of RSignalLight. Similarly, we can get the CTrack,
CPoint and CSignalLight (see our website).

Dispatcher: It is responsible for sending dispatching
instructions to control different trains entering the track at
different time. How many trains to be sent is decided by detailed
number. So we cannot give a graph pattern here. But the basic
sentence can be recording as: for each train i, we add a state with
the message of “send[i-1]!” and a transition with the massage of
“trainEnter[i-1]?”.

IV. A SYSTEM MODELING METHOD BASED ON PATTERNS

We give a 5-step process to model the system.

Step 1: Declaring all the models in the system Through
analysis, we define that the system is composed by 12 models,
so we make the following declaration:

system Train, Track, Light, Point, Center, Dispatcher, CSignalLight, CPoint,
CTrack, RSignalLight, RTrack, InterlockTable;

Step 2: Setting model instantiations Get the number of trains,
signals, tracks and points from the interlocking table. Suppose

https://github.com/wymgal/IS/issues
https://github.com/wymgal/IS.git
https://github.com/wymgal/IS/issues
https://github.com/wymgal/IS/issues
https://github.com/wymgal/IS.git.
https://github.com/wymgal/IS/issues

Nt, Nl, Nr and Np are the number of trains, signals, tracks and
points respectively. The models could be instantiated by the
following declarations:

const int TRAINS=Nt; typedef int[0,TRAINS-1] train_t;
const int LIGHTS =Nl; typedef int[0,LIGHTS-1] light_l;

const int TRACKS = Nr; typedef int[0,TRACKS-1] track_t;

const int POINTS=Np; typedef int[0,POINTS-1] point_p;

Step 3: Reusing patterns The parameters in each pattern can
be modified according to specific situations. According to the
number of entities, the RSignalLight and RTrack model can be
instantiated. Reuse the Center pattern, create the SHA model of
the Center, and instantiate the SHA models of the Controller
submodules.

Step 4: Defining the system interactions The interactions are
achieved by the communication between the entities in the
context diagram. So defining the system interactions is to define
all the messages in the communication between entities. Define
all messages in the global declaration. For example, Chan
green[Nt*Nl]. According to the interlocking table, we can know
that one train needs Nl signal lights, that is, needs Nl green
signals. So for Nt trains, there should be Nt*Nl green signals.
The other messages are declared in our website.

Step 5: Declaring system variables The global variables in
the system are actually shared information between models.
They should include the track occupancy identifier, and the
number of instantiations of each entity in the global declaration.
In addition, the variables used by the functions of Center should
be declared too. The exact declaration is as follows.

int y[Nt*Nr] ={0,0,...,0} // the track occupancy identifier

const int l_num=Nl, p_num=Np, tr_num=Nr, t_num=Nt;
// the number of instantiations of each entity

int route_id, trackID[Nr], PointInfo[Np][Np], lightID[Nl];

// the variables used by the functions

V. CASE STUDY

In this paper, we use a case which interlocking table is shown
in Table I. There are two routes, Route1 and Route2, 5 signal
lights S1, S2, S4, S5, and S7 on the Route1, and 5 lights S1, S2,
S3, S6, and S7 on the Route2. Two points SW1 and SW2, and five
tracks T1, T2, T3, T4, and T5 are included.

A. Defining the system

According to the process, we declare the 12 models as listed
in Section IV. From Table I, we get the numbers of the trains,
signal lights, tracks and points, which are 2, 5, 5, 2 respectively.
It means Nt=2, Nl=5, Nr=5, Np=2. Put them into the model
declaration to declare the models of the system:

const int TRAINS=2; const int LIGHTS =5;

const int TRACKS = 5; const int POINTS=2;
Reuse the patterns of Train, Signal Light, Point, Track and

Interlocking Table, and modify RSignalLight and RTrack

according to their numbers 5 and 5. We modify the number of
transitions and judging conditions, and get these two models.
RSignalLight model and RTrack model are in our website.
Finally the Controller model is constructed. We reuse the Center
pattern, and build CTrack, CPoint, CSignalLight according to
their numbers. Reuse the Dispatcher. We add two clock
variables to Dispatcher, clock variable m starts timing when the
train0 enter the track, and the clock variable n starts timing when
the train1 enter the track. The CTrack model is shown in our
website, and the rest of the Controller submodules are displayed
in our website. After this, put Nt=2, Nl=5, Nr=5, Np=2 into the
global declaration as follows. Finally the system is built.

B. Simulation and verification

UPPAAL uses BNF syntax to describe the security
requirements of the system, and the modeler can verify the
related properties of the system according to the different design
requirements. This paper only considers the part design
requirements, including the system model is not deadlock (1),
the Signal Light model can enter the green light state (2), and the
Monitor model can detect the error of the system into the
warning state (3). They are represented as follows:

A[] not deadlock (1)
E<> Light.GREEN (2)

E<> Monitor.warning (3)

The simulation model of the system in the UPPAAL
platform, after repeated simulation and observation, meet the
above three design requirements: the preliminary determination
of each state of the model is deadlock and reachable; signal light
can enter the green state; the monitor can determine the
corresponding error and enter warning state.

As a result, the model meets the requirements of the system,
the expected security requirements, and ensures the security and
correctness of the model. The following results are obtained, as
shown in Figure 6.

VI. RELATED WORK

In order to ensure the correctness and safety of the system,
there are many works for modeling the real time and fault
stochastic characteristics. Formal methods are widely used in
modelling and analysis [10,11], such as Timed Automata [12],
Petri net [13], Z language [14] and so on. For example, Wang
uses the time automata theory to model and verify the railway
station signal interlocking system and the interlocking route
control process [15]. Hei et al. use Petri net to model and verify
the distributed control interlocking system [16]. Tiejiang Wang
describes the security requirements of computer interlocking
software in Z language [17].

TABLE I. INTERLOCKING TABLE

Route Signals Points Track

ID From To Green Red
Open Close

Up Down

R1 S1 S7 S1,S2,S4,S5,S7 S3,S6 SW1,SW2 T1,T2,T3,T5,T6

R2 S1 S7 S1,S2,S3,S6,S7 S4,S5 SW1,SW2 T1,T2,T4,T5,T6

int y[10] ={0,0,0,0,0,0,0,0,0,0};
const int l_num=5,p_num=2,tr_num=5, t_num=2;

int route_id, trackID[5], PointInfo[2][2], lightID[5];

https://github.com/wymgal/IS/issues
file:///I:/youdao/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
file:///I:/youdao/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
https://github.com/wy/IS.git
https://github.com/wymgal/IS/issues
https://github.com/wymgal/IS/issues
https://github.com/wymgal/IS/issues
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Xinhong%20Hei.QT.&newsearch=true

Fig.6 Verification results

However, these formal methods have shortcomings for
modeling the interlocking system. Although timed automata
consider the time requirement of the system with real-time
characteristics, it has no stochastic and cannot model the
complex system's stochastic faults. The Petri net and Z
languages do not consider the time and stochasticity of the
system when modeling. Compared with these methods, our
approach of using stochastic hybrid automata can consider the
stochastic and real time characteristics of interlocking system,
which is more suitable for interlocking system modeling.

Another related work is pattern based modeling. Although
the UPPAAL-SMC provides the train gate example, but it does
not have patterns. There are many efforts in pattern based
modeling. For example, Wu et al. propose a traffic pattern
modeling approach for the urban intersection[18]. Zhang et al.
propose an observer-pattern modeling method to eliminate the
time-variance effect for two-stage boost inverter [19]. However,
these pattern-based system modeling work is rarely related to the
interlocking system. In addition, many modeling languages used
in them do not pay particular attention to time constraints and
stochasticity.

VII. CONCLUSION AND FUTURE WORK

As one of the core systems of rail transportation system, the
interlocking system ensures the safety of trains. Based on the
SHA, this paper presents the modeling of the interlocking system
using patterns. The modeled system could be analyzed using
simulation and verification technology. The main contributions
of this paper include:

(1) The 12 model patterns for interlocking systems are
extracted covering 6 entities consisting of train, signal
light, point, track, interlocking table and controller;

(2) An approach for reusing these patterns to construct an
exact interlocking system model is proposed. Using this
approach, novices of SHA could be quickly build a
system for further analysis.

The next step work is to consider more fault types and apply
this model to accident prediction.

ACKNOWLEDGMENTS

This work was supported by the Natural Science Foundation
of China (No. 61472140) and Defense Industrial Technology
Development Program (JCKY2016212B004-2).

REFERENCES

[1] "7.23" Yong Wen line special major railway traffic accident investigation
report [EB/0L].(2011-12-25) [2013-02-10].
http://www/gov.cn/gzdt/2011-12/29/content_2032986.html

[2] Baofeng Xie. Status and development of computer interlocking system of
station[J]. Transportation system engineering and information, 2004,
4(4):86-90.

[3] EN501 28C．Railway application-SoRware for railway control and
protectionsystem[J]．2000．

[4] Krishna,C ． M ． Real Time Systems[M] // Real-Time
Systems．McGraw-Hill Higher Education,1 996：3-5．

[5] Bortolussi L, Policriti A. Stochastic Programs and Hybrid Automata for
(Biological) Modeling[C]// Conference on Computability in Europe:
Mathematical Theory and Computational Practice. Springer-Verlag,
2009:37-48.

[6] Bemporad A, Cairano S D. Optimal Control of Discrete Hybrid Stochastic
Automata[J]. IEEE Transactions on Automatic Control, 2005,
56(6):1307-1321.

[7] Bulychev P, David A, Larsen K G, et al. UPPAAL-SMC: Statistical
Model Checking for Priced Timed Automata[J]. Electronic Proceedings
in Theoretical Computer Science, 2012, 85.

[8] Hartonas-Garmhausen V, Cimatti A, Clarke E, et al. Verification of a
safety-critical railway interlocking system with real-time constraints[J].
Science of Computer Programming, 2000, 36(1):53-64.

[9] Zengming Yu, Zhengdong Liu. The change of interlocking function in
communication based train control system[J]. Railway Operation
Technology,2011, 17(4):13-15.

[10] Amir Pnueli．Formal Verification: All Qucstiom and Some Answers.CS
Leading Teachers Course, WIS, May 9,1999.

[11] Wing J M．A specifier’S introduction to formal methods [J]． Computer,
1990, 23(23)：8-22．

[12] Alur R. Timed Automata[J]. Lecture Notes in Computer Science, 1999,
126(94):183--235.

[13] Yang yang, Ming Pan, Meifang He. Formal specification process of the
interlocking software with Petri nets[J]. China Railway
Sciences,2002,23(3):49-54.

[14] Tiantian Tang. Research on Application of Software Reliability Design
Method in Computer Interlocking System[D]. Hefei Polytechnic
University,2004.

[15] Guanning Wang. Modeling and Verification of Interlocking Route
Control Process Based on UPPAAL[D]. Beijing Jiaotong University,2009.

[16] Hei X, Takahashi S, Hideo N. Toward developing a Decentralized
Railway Signalling System Using Petri Nets[C]// Robotics, Automation
and Mechatronics, 2008 IEEE Conference on. IEEE, 2008:851-855.

[17] Tiejiang Wang, Meng Li. Z specification for computer interlocking
software [J]. ChinaRailway Society, 2003, 25(4):62-66.

[18] Wu C E, Yang W Y, Ting H C, et al. Traffic pattern modeling, trajectory
classification and vehicle tracking within urban intersections[C]//
International Smart Cities Conference. 2017:1-6.

[19] Zhang H, Li W, Ding H, et al. Observer-Pattern Modeling and Nonlinear
Modal Analysis of Two-stage Boost Inverter[J]. IEEE Transactions on
Power Electronics, 2017, PP(99):1-1.

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Cheng-En%20Wu.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hao%20Zhang.QT.&newsearch=true

