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Abstract—The equipment faults of the interlocking system in rail 

transit system has occurred frequently, and these faults can cause 

serious accidents. The modeling of the interlocking system must 

aim at the stochasticity and real-time characteristics of equipment 

faults. Therefore, this paper proposes to model the interlocking 

system using stochastic hybrid automata. In order to improve 

model efficiency, we try to extract the pattern of the interlocking 

system model, and reuses these patterns in system modeling. The 

main contributions include: (1) Based on the business analysis of 

the interlocking system, 12 model patterns of the interlocking 

system are extracted; and (2) the modeling process of the 

interlocking system based on patterns reuse is given to guide 

system modeling. Finally, a case study is presented to illustrate the 

feasibility and effectiveness of our approach. 

Keywords-Interlocking system; Pattern reuse; Stochastic hybrid 
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I.  INTRODUCTION 

The safety of rail transit systems is of great importance. 
However, in recent years, railway accidents happen from time to 
time. For example, July 23, 2011 Yong Wen line "7.23" major 
railway traffic accident. This is a serious accident caused by the 
design flaws of the equipment in the control center, inadequate 
checks on the road, and ineffective emergency response after 
equipment failure which caused by lightning. The accident led 
to a rear-end train collision, and caused 40 deaths, 172 injuries, 
and the direct economic losses of 19371.65 million RMB [1]. 

The interlocking system is one of the core subsystems in the 
rail transit system [2]. It has SIL4-level safety requirements, 
complex logic, and high requirements for real-time performance 
[3] [4]. It can endanger the safety of the vehicle when a failure 
occurs. Therefore, modeling and analyzing the interlocking 
system become very important and is one of the key methods to 
ensure system safety. 

The interlocking system is composed by various equipment. 
The main cause of most accidents in interlocking system is 
equipment failure which is stochastic. For example, lightning 
strike causes the short circuit of track and leads to an accident. 
Therefore, we should consider the stochastic characteristic of 
equipment faults when modeling. Stochastic Hybrid Automata 
(SHA) [5] offers stochasticity and time modeling, and has been 
widely used in various fields such as electromechanical systems, 
computer simulation, automata and so on [6]. In this paper, we 
take the time constraints into consideration and propose to use 
SHA to construct the system model for verification. Considering 
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the modeling and verification, we choose the platform 
UPPAAL-SMC [7] for modeling and analysis.1 

In order to facilitate the construction of rail transit system 
model, we extract the patterns of the system model for the 
interlocking system. Using these patterns, one only needs to fill 
in the appropriate parameters to customize the specific system 
model. The final customized system model is verified. 

The rest of this paper is organized as follows. Section II 
presents the framework of our approach; Section III gives the 
method for constructing the system model patterns and Section 
IV clarifies pattern based system model generation method; a 
case study is given in section V and the related work follows in 
section VI. Finally, Section VII concludes the paper. 

II. FRAMEWORK OF OUR APPROACH  

The purpose of railway interlocking system is to control 
points and signal lights to prevent trains from collisions and 
derailments [8], while allowing its movement. The processing 
flow of the interlocking system is on 
https://github.com/wymgal/IS.git (for simplicity, we will refer it 
as our website in the following). Generally speaking, the 
physical domain of an interlocking system consists of 5 entities, 
tracks, points, signal lights, routes, and interlocking table. The 
tracks are divided into sections, and each section is associated 
with a circuit for detecting whether it is occupied or not. Track 
sections are joined by points which can guide trains into different 
directions depending on the positions of the points. A point can 
be in position normal or reverse, as well as unlocked to show 
that the tracks are unconnected at the crossing. Signal lights are 
placed between track sections and use red or green color to 
indicate proceed or stop signal respectively. Routes are 
established for authorizing a train to enter. It is often defined by 
interlocking table, which includes the conditions for locking and 
releasing the train route and for when the entry signals of the 
route is set to show proceed or stop signal.  

According to the above descriptions, we get a context 
diagram of interlocking system, as shown in Figure 1. The 
system contains six entities, Train, Signal Light, Point, Track, 
Interlocking Table and the Controller. Except Controller, we 
name the other five entities the environment of the interlocking 
system. The environment interacts with the Controller. The 
interactions are the shared message between the Controller and 
the environment entities. 

Based on the context diagram, we give a framework of our  
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Fig.1 Context diagram of the interlocking system 

approach as shown in Figure 2. Firstly, we extract the system 
pattern from the domain knowledge of the interlocking system. 
The system pattern consists of two parts: the environment 
patterns and the controller patterns. Based on the extracted 
system model, a system model is generated in combination with 
a model parameter table. The generated system model is 
simulated on the UPPAAL-SMC platform to verify the 
properties of the system. 
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Fig.2  Framework of our approach 

The environment patterns include the models of each 
environmental entity of the interlocking system, such as Train, 
Point, Interlocking Table, Signal Light, and Track. The 
controller patterns are also defined.  Model parameter list is the 
key to realize the reusability which is given by domain experts. 
Using parameters in the parameter list, the extracted system 
patterns can be instantiated to generate a specific system model.  

III. INTERLOCKING SYSTEM MODEL PATTERNS 

A. Constructing process 

Firstly, we give a 3-step process to obtain the SHA of each 
system entity. The three steps are constructing the basic 
automata, modeling faults, and adding time constraints. 

Step 1: Constructing the basic automata 
The process description related to the entity is found 

according to the system processing flow and system context 
diagram, including all the behaviors related to the entity. 

We give a guideline to get a basic automata of each entity. 
Each time the entity sends or receives a message (action), the 
entity's automata moves from one state to another state. 

Therefore, an action of each entity is transformed into a state and 
a transition in a basic automata. The transition is an action. 

Step 2: Modeling faults 

In the entities, it is possible that the occurrence of an 

abnormal event can lead to a fault, and an abnormal event can be   

represented by the probability. Therefore, we find all the 

abnormal events, and use stochastic probability events to express 

them. Different events are performed with different probabilities. 

Based on the basic automata, stochastic probability events are 

added to model faults. 

Step 3: Adding time constraints 

This step is to add time constraints on the results of step 2. 

Firstly, the time constraints of entities are extracted from the 

domain experts and expressed as <message1, message2, <=n 

time unit>. Then, the corresponding clock variable x are defined. 

The representation of the clock constraint in the automata is the 

time between message1 and message2, that is, in the automata, 

the initial value of clock variable x on the "update" of message1 

is 0, and the inequality x<=n of the clock variable is defined in 

the "guard" of the message2. 

B. Environment entity patterns 

a) Train Pattern 
We obtain the processing flow of the train entity from the 

system processing flow. When the train enters the track, it sends 
a request signal to the controller and waits for the signals of 
signal lights. If the train is accepted within the stipulated time, it 
enters the track. If rejected, it stops and waits. According to the 
guideline, a basic automata of the train entity is obtained. 

A fault may occur during the train running, that is, between 
sending "trainEnter" message and sending "trainLeave" message. 
Add an error state to the automata. Message sent from 
"trainEnter" is transferred to the error state with the probability 
of m% and transferred to the starting point of "trainLeave" 
message with the probability of n%, where, m + n = 100, m and 
n are real numbers, and are decided by domain experts. 

The time constraints are obtained from domain experts as 
follows. The not-all-lights-green signal "notallgreen" is received 
within specified time. The all-lights-green "allgreen" is received 
within specified time. The clock variable x is defined to indicate 
the waiting time for the signal light, that is, the time from 
sending "request" message to receiving "notallgreen" message 
or "allgreen" message. Therefore, the initial value of x on the 
"update" of the "request" transition is 0, and the inequality "x<z" 
(z is a constant) is used as the "guard" of transition "notallgreen" 
or "allgreen". Therefore, the SHA pattern of the train is obtained, 
as shown in Figure 3(a). 

b) Signal Light Pattern 
We divide the activities involved in Signal Light into two 

parts. One is SSignalLight, which is responsible for setting the 
status of the signal light. The other part is RSignalLight, which 
is responsible for inquiring the status of the signal light. 

Signal Light = SSignalLight||RSignalLight 

SSignalLight: We get the processing flow of the SSignalLight 

from the system processing flow. The initial state of the Signal 

Light is red. After receiving the commands of the controller, the 

signal light changes its state. According to the guideline, the 
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Fig.3 SHA patterns of environment entities

basic automata of the SSignalLight is obtained (see our website). 

A fault may occur during the change of the signal lights’ states, 
that is, between receiving "dogreen" message and sending 
"turnGreen" message or between receiving "dored" message and 
sending "turnRed" message. Add an error state to the automata. 
Message sent from "dogreen" is transferred to the error state with 
the probability of m% and transferred to the starting point of 
"turnGreen" message with the probability of n%. Similarly, we 
can model faults in the situation where the signal light changes 
from green to red. 

The time constraints are obtained are as follows. There is a 
certain delay in the state change of Signal Light. A local clock a 
is given to indicate the delay time of signal light changing from 
red to green, and a clock b indicates the delay time of signal 
changing from green to red. The initial value on the "update" of 
the "dogreen" transition is 0, and the inequality "a>1" is used as 
the "guard" of the transition. Similarly, we can define the clock 
b in this automata. The SHA of the SSignalLight is thus obtained, 
as shown in Figure 3(b). 

RSignalLight:  In order to get a set of single light states, we 

first model one single light. According to the system processing 

flow, we can get the processing flow of the RSignalLight. 

According to the guideline, we build an automata for one signal 

light as shown in Figure 4.  

For a group of lights, the modeling process is based on the 
situation of one signal light. Add the corresponding different 
signal lights' green identifier isLightGreen and the red light 
identifier isLightRed. For N signal lights, there should be n  

 

Fig.4 SHA pattern of RSignalLight for querying single signal light 

isLightGreen[0,1,...,n-1] and isLightRed[0,1,...,n-1]. Add n 
transitions with the message of "turnGreen[n-1]?" from the 
initial state to itself. Make isLightRed[n-1]=1. The judgement 
condition of transition "allgreen!" is: isLightGreen[0]==1&&is- 
LightGreen[1]==1&&...&&isLightGreen[n-1]==1. Similarly, 
we change the judgement condition of transition "notallGreen", 
transition "allred" and transition "notallred". The automata for a 
group of signal lights is in our website. We do not consider the 
error situation and the time constraints of RSignalLight. 

c) Point Pattern 
We can get the processing flow of the point entity from the 

system processing flow. The initial state of the Point is unlocked. 
When the point receives commands from the controller, the 
point changes its state. There is a certain delay in the state change 
of the point entity. According to the guideline, a basic automata 
of the point is obtained as shown in our website.  
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A fault may occur during the point changing from the locked 
state to the unlocked state or from the unlocked state to the 
locked state, that is, between receiving "dolock" message and 
sending "turnLock" message or between receiving "dounlock" 
message and sending "turnUnlock" message. Add an error state 
to the basic automata. Message sent from "dolock" is transferred 
to the error state with the probability of m% and transferred to 
the starting point of "turnLock" message with the probability of 
n%. Similarly, we can model faults in the situation where the 
point changing from locked state to the unlocked state. 

The time constraint for point entity is that there is a certain 
delay in the state change of the point. The local clock a is defined 
to indicate that the delay time of the point changing from 
unlocked state to locked state, and the local clock b indicates the 
delay time of the point changing from locked state to unlocked 
state. That is, clock a is the time from receiving "dolock" 
message to the next state lock. Therefore, the initial value of a 
on the "update" of the "dolock" transition is 0, and the inequality 
"a>1" is used as the "guard" of the transition. Similarly, we can 
define the clock b. The SHA of the point is thus obtained, as 
shown in Figure 3 (c). 

d) Track Pattern 
We divide activities involved in Track into two parts. One is 

STrack, which is responsible for setting the status of the Track. 
The other part is RTrack, which is responsible for inquiring the 
status of the Track. So we get:  Track=STrack||RTrack 

STrack: The processing flow of the STrack is extracted from 

the system processing flow. After receiving commands from the 

controller, the track check whether it is occupied and return the 

results to the controller. According to the guideline, a basic 

automata is obtained ( see our website). 
A fault may occur during the process of setting the track state, 

that is, between receiving "trainEnter" message and receiving 
"trainLeave" message. Add an error state to the automata. 
Message sent from "trainEnter" is transferred to the error state 
with the probability of m% and transferred to the starting point 
of "trainLeave" message with the probability of n%.  

The method of adding transition with a probability is similar 
with the case of the train entity. Without taking the time 
constraints of track entity into account, we do not extract time 
constraints. The SHA of STrack is obtained by the above steps, 
as shown in Figure 3 (d). 

RTrack: It is finished in two steps. One is for one track. We 

build an SHA model for one track, as shown in our website. The 

other one is for a group of tracks. The processing is similar with 

RSignalLight. We only need to change the judgment conditions 

and transitional messages. 

e) Interlocking Table Pattern 
According to the system processing flow, the processing 

flow of the Interlocking Table entity is obtained. After receiving 
the query command from the controller, the interlocking table 
queries the related information and returns results. According to 
the guideline, the automata of the interlocking table is obtained 
as shown in Figure 3(e). We do not consider the error situation 
and time constraints of the interlocking table entity. 

C. Controller Pattern 

The controller is divided into two parts. One is the Center 
which is responsible for controlling all the tracks, points, signal 
lights, trains and the interlocking table.  The other part called 
Submodules, which is in charge of controlling each track, point, 
signal light and train respectively. So we define:  

Controller=Center||Submodules 

Submodules=CTrack||CPoint||CSignalLight||Dispatcher 

Center: The processing scenario of the Center is extracted 
as expressed in our website. According to the guideline, the basic 
automata of the Center is obtained as shown in Figure 5. 

Fig.5 A Center Pattern 

In the global declaration, we define 8 functions required by 
Center to interact with each entity. They are send_routeID, 
getRouteID, send_trackID, getTrackID, send_pointInfo, 
getPointInfo, send_lightID, and getLightID. Their functions are 
the meaning of their name. Due to limited space, the exact 
definition is shown in our website. 

CTrack, CPoint, and CSignalLight: The CTrack is 
responsible for sending "checkoccupied" message to each track, 
and checking the occupancy situation of each track. After 
receiving the instruction of Center, the CPoint sends "dolock" 
and "dounlock" message to each point. After receiving 
instruction from Center, the CSignalLight sends "dogreen" and 
"dored" message to each signal light. The construction process 
of CTrack, CPoint, CSignalLight are similar to the construction 
process of RSignalLight. Similarly, we can get the CTrack, 
CPoint and CSignalLight  (see our website). 

Dispatcher: It is responsible for sending dispatching 
instructions to control different trains entering the track at 
different time. How many trains to be sent is decided by detailed 
number. So we cannot give a graph pattern here. But the basic 
sentence can be recording as: for each train i, we add a state with 
the message of “send[i-1]!” and a transition with the massage of 
“trainEnter[i-1]?”.  

IV. A SYSTEM MODELING METHOD BASED ON PATTERNS 

We give a 5-step process to model the system. 

Step 1: Declaring all the models in the system Through 
analysis, we define that the system is composed by 12 models, 
so we make the following declaration:  

system Train, Track, Light, Point, Center, Dispatcher, CSignalLight, CPoint, 
CTrack, RSignalLight, RTrack, InterlockTable; 

Step 2: Setting model instantiations Get the number of trains, 
signals, tracks and points from the interlocking table. Suppose 
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Nt, Nl, Nr and Np are the number of trains, signals, tracks and 
points respectively. The models could be instantiated by the 
following declarations: 

const int TRAINS=Nt; typedef int[0,TRAINS-1] train_t; 
const int LIGHTS =Nl; typedef int[0,LIGHTS-1] light_l;  

const int TRACKS = Nr; typedef int[0,TRACKS-1] track_t; 

const int POINTS=Np; typedef int[0,POINTS-1] point_p; 

Step 3: Reusing patterns The parameters in each pattern can 
be modified according to specific situations. According to the 
number of entities, the RSignalLight and RTrack model can be 
instantiated. Reuse the Center pattern, create the SHA model of 
the Center, and instantiate the SHA models of the Controller 
submodules. 

Step 4: Defining the system interactions The interactions are 
achieved by the communication between the entities in the 
context diagram. So defining the system interactions is to define 
all the messages in the communication between entities. Define 
all messages in the global declaration. For example, Chan 
green[Nt*Nl]. According to the interlocking table, we can know 
that one train needs Nl signal lights, that is, needs Nl green 
signals. So for Nt trains, there should be Nt*Nl green signals. 
The other messages are declared in our website. 

Step 5: Declaring system variables The global variables in 
the system are actually shared information between models. 
They should include the track occupancy identifier, and the 
number of instantiations of each entity in the global declaration. 
In addition, the variables used by the functions of Center should 
be declared too. The exact declaration is as follows. 

int y[Nt*Nr] ={0,0,...,0}     // the track occupancy identifier 

const int l_num=Nl, p_num=Np, tr_num=Nr, t_num=Nt; 
// the number of instantiations of each entity 

int route_id, trackID[Nr], PointInfo[Np][Np], lightID[Nl]; 

// the variables used by the functions 

V. CASE STUDY 

In this paper, we use a case which interlocking table is shown 
in Table I. There are two routes, Route1 and Route2, 5 signal 
lights S1, S2, S4, S5, and S7 on the Route1, and 5 lights S1, S2, 
S3, S6, and S7 on the Route2. Two points SW1 and SW2, and five 
tracks T1, T2, T3, T4, and T5 are included. 

A. Defining the system 

According to the process, we declare the 12 models as listed 
in Section IV. From Table I, we get the numbers of the trains, 
signal lights, tracks and points, which are 2, 5, 5, 2 respectively. 
It means Nt=2, Nl=5, Nr=5, Np=2. Put them into the model 
declaration to declare the models of the system: 

const int TRAINS=2;    const int LIGHTS =5;  

const int TRACKS = 5;  const int POINTS=2; 
Reuse the patterns of Train, Signal Light, Point, Track and 

Interlocking Table, and modify RSignalLight and RTrack 

according to their numbers 5 and 5. We modify the number of 
transitions and judging conditions, and get these two models. 
RSignalLight model and RTrack model are in our website. 
Finally the Controller model is constructed. We reuse the Center 
pattern, and build CTrack, CPoint, CSignalLight according to 
their numbers. Reuse the Dispatcher. We add two clock 
variables to Dispatcher, clock variable m starts timing when the 
train0 enter the track, and the clock variable n starts timing when 
the train1 enter the track. The CTrack model is shown in our 
website, and the rest of the Controller submodules are displayed 
in our website. After this, put Nt=2, Nl=5, Nr=5, Np=2 into the 
global declaration as follows. Finally the system is built. 

B. Simulation and verification 

UPPAAL uses BNF syntax to describe the security 
requirements of the system, and the modeler can verify the 
related properties of the system according to the different design 
requirements. This paper only considers the part design 
requirements, including the system model is not deadlock (1), 
the Signal Light model can enter the green light state (2), and the 
Monitor model can detect the error of the system into the 
warning state (3). They are represented as follows: 

A[] not deadlock  (1) 
E<> Light.GREEN (2) 

E<> Monitor.warning (3) 

The simulation model of the system in the UPPAAL 
platform, after repeated simulation and observation, meet the 
above three design requirements: the preliminary determination 
of each state of the model is deadlock and reachable; signal light 
can enter the green state; the monitor can determine the 
corresponding error and enter warning state. 

As a result, the model meets the requirements of the system, 
the expected security requirements, and ensures the security and 
correctness of the model. The following results are obtained, as 
shown in Figure 6. 

VI. RELATED WORK 

In order to ensure the correctness and safety of the system, 
there are many works for modeling the real time and fault 
stochastic characteristics. Formal methods are widely used in 
modelling and analysis [10,11], such as Timed Automata [12], 
Petri net [13], Z language [14] and so on. For example, Wang 
uses the time automata theory to model and verify the railway 
station signal interlocking system and the interlocking route 
control process [15].  Hei et al. use Petri net to model and verify 
the distributed control interlocking system [16]. Tiejiang Wang 
describes the security requirements of computer interlocking 
software in Z language [17]. 

TABLE I.  INTERLOCKING TABLE 

Route Signals Points Track 

ID From To Green Red 
Open Close 

 
Up Down  

R1 S1 S7 S1,S2,S4,S5,S7 S3,S6 SW1,SW2   T1,T2,T3,T5,T6 

R2 S1 S7 S1,S2,S3,S6,S7 S4,S5  SW1,SW2  T1,T2,T4,T5,T6 

int y[10] ={0,0,0,0,0,0,0,0,0,0}; 
const int l_num=5,p_num=2,tr_num=5, t_num=2; 

int route_id,  trackID[5],  PointInfo[2][2],  lightID[5]; 

https://github.com/wymgal/IS/issues
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Fig.6 Verification results 

However, these formal methods have shortcomings for 
modeling the interlocking system. Although timed automata 
consider the time requirement of the system with real-time 
characteristics, it has no stochastic and cannot model the 
complex system's stochastic faults. The Petri net and Z 
languages do not consider the time and stochasticity of the 
system when modeling. Compared with these methods, our 
approach of using stochastic hybrid automata can consider the 
stochastic and real time characteristics of interlocking system, 
which is more suitable for interlocking system modeling.  

Another related work is pattern based modeling. Although 
the UPPAAL-SMC provides the train gate example, but it does 
not have patterns. There are many efforts in pattern based 
modeling. For example, Wu et al. propose a traffic pattern 
modeling approach for the urban intersection[18]. Zhang et al. 
propose an observer-pattern modeling method to eliminate the 
time-variance effect for two-stage boost inverter [19]. However, 
these pattern-based system modeling work is rarely related to the 
interlocking system. In addition, many modeling languages used 
in them do not pay particular attention to time constraints and 
stochasticity. 

VII. CONCLUSION AND FUTURE WORK 

As one of the core systems of rail transportation system, the   
interlocking system ensures the safety of trains. Based on the 
SHA, this paper presents the modeling of the interlocking system 
using patterns. The modeled system could be analyzed using 
simulation and verification technology. The main contributions 
of this paper include:  

(1) The 12 model patterns for interlocking systems are 
extracted covering 6 entities consisting of train, signal 
light, point, track, interlocking table and controller;  

(2) An approach for reusing these patterns to construct an 
exact interlocking system model is proposed.  Using this 
approach, novices of SHA could be quickly build a 
system for further analysis.  

The next step work is to consider more fault types and apply 
this model to accident prediction. 
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