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Abstract—Dynamic Protocol Mining (DPM) techniques are a 

promising approach to infer useful API protocols automatically. 

However, their results are biased to input test cases and the 

instrumentation overhead discounts their usability in industrial 

practice. In this paper, we propose a distributed dynamic protocol 

mining framework NSpecMiner. Our framework is based on a 

client-server architecture, where the client tracer gathers 

Program Execution Traces (PETs) and sends them to the server 

for mining. Mined protocols are saved on the server to provide 

various kinds of remote services, such as API protocol retrieval 

and program verification, etc. Compared with local miners, 

NSpecMiner has many advantages: 1) A large number of diverse 

PETs are likely to be collected from multiple clients, which is 

essential for mining accurate and complete API protocols. 2) 

Instrumentation overhead can be balanced among multiple clients. 

3) Via integrating the client tracer into widely used software, we 

can mine API protocols transparently and automatically without 

any human effort. To evaluate our technique, we performed a 

comparison test with a local miner ISpecMiner and NSpecMiner. 

Preliminary results show that our approach is effective to mine 

useful API protocols as local miners. While our method is able to 

gather PETs concurrently from multiple clients and other merits 

of the distributed technology will further benefit DPM 

significantly. 

Keywords—program temporal specification; program dynamic 

analysis; distributed specification mining; API protocol mining 

I. INTRODUCTION 

API protocols specify temporal constraints regarding the 
order of calls of API methods. For example, calling peek() on 
java.util.Stack without a preceding push() gives an 
EmptyStackException, and calling next() on java.util.Iterator 
without checking whether there is a next element with hasNext() 
can result in a NoSuchElementException. API clients that 
violate such protocols do not obtain the desired behaviors and 
may even crash the program [1]. 

API protocols are beneficial for many tasks of software 
development, such as program documentation, understanding, 
testing, verification, etc. However, programmers are reluctant to 
write API protocols. Even when available, there is no guarantee 

of their consistence, completeness, and correctness. Dynamic 
Protocol Mining (DPM) [2]-[5] is a promising approach to infer 
useful API protocols automatically. It always works in a two-
phase mode: 1) Program Execution Traces (PETs) are gathered 
from client programs leveraging instrumentation techniques. 2) 
API protocols are synthesized from PETs based on various kinds 
of sequential data mining techniques. Compared with Static 
Protocol Mining techniques (SPM) [6]-[13], DPM can achieve 
more accurate results based on runtime information. 
Additionally, it can be used more extensively, especially when 
source codes are unavailable. Furthermore, many tricky 
problems with SPM, such as infeasible paths, complicated data 
structures and pointer aliasing can be avoided. However, the 
following drawbacks limit its applications in industrial practice: 
1) The effect of DPM largely depends upon input test cases. If 
an improper set of test cases is selected, DPM may neglect many 
program paths and cause partial and inaccurate API protocols. 2) 
In order to gather PETs, DPM is required to run client programs, 
which may be difficult to be automated in some cases. 3) The 
runtime overhead caused by instrumentation techniques may 
discount the practical usability of DPM. 4) Existing DPM tools 
(such as ADABU [14]) always work in a manner as follows. First, 
they collect PETs from client programs using a tracer and then 
store the traces into a trace file. Then, they take the trace file as 
input and synthesize API protocols. Each run of a client program 
will generate a trace file and corresponding protocols. Results of 
multiple runs cannot be merged. What is worse is that mined 
protocols are biased to input trace files. Additionally, if PETs 
gathered from a program is scarce, we may achieve partial and 
inaccurate API protocols. Even though mined protocols can be 
merged, to gather enough PETs for mining, we should manually 
run a large number of programs one by one, which will result in 
significant manpower overhead and is unacceptable in practice. 

This paper aims to improve the DPM techniques and 
promote their applications in industrial practice. We present a 
DPM framework NSpecMiner, which is based on a client-server 
architecture. The client is a tracer, which collects PETs and 
sends them to the server for mining. The server receives PETs 
and synthesizes API protocols. After that, the mined protocols 
are stored on the server to provide various kinds of remote 
services, such as API protocol retrieval and program verification, 
etc. The functioning of our framework is illustrated in Figure 1. (DOI reference number: 10.18293/SEKE2017-089) 
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Compared with local miners (such as ADABU), this architecture 
can benefit protocol mining in many ways: 1) Since the server 
can receive PETs from different clients and programs (as shown 
in Figure 1, the server receives PETs from n clients, which run 
different programs respectively, such as FreeMind, 
RapidMiner, SQuirreL and OpenProj), a large number of 
diverse PETs are likely to be collected efficiently, which is 
essential for mining accurate and complete API protocols. 2) 
The instrumentation overhead can be balanced among multiple 
clients based on a divide-and-conquer strategy. 3) This 
architecture is flexible, because client tracers based on whatever 
instrumentation techniques can send PETs to the server for 
mining if their formats satisfy requirements. 4) Via integrating 
the client tracer into daily used software, the task of mining 
protocols can be completely automated. On the client side, once 
the software is run by an end user, PETs will be sent to the server 
for mining automatically in the background. The whole mining 
process is transparent to software users. Little extra manpower 
is required to run client programs exclusively for gathering PETs. 
On the server side, thousands of millions of PETs may be 
received from different clients per second and perfect API 
protocols will be learned, which may cost several months by 
local miners. 

The contributions of this paper are: 

• A dynamic API protocol mining framework 
NSpecMiner based on a client-server architecture is 
proposed. 

• A strategy of balancing instrumentation overhead is 
proposed. 

• Experiments are conducted to evaluate our technique. 

The rest of this paper is organized as follows: Section 2 
presents the overview of our framework. Section 3 introduces an 

example API protocol mining technique used in this work. 
Section 4 elaborates our strategy of instrumentation balance. 
Section 5 presents our strategy of API protocol evolvement. 
Section 6 evaluates our technique and demonstrates preliminary 
results. Section 7 presents our conclusions and future work. 

II. OVERVIEW OF NSPECMINER 

NSpecMiner is a generic dynamic API protocol mining 
framework. The distinguishing characteristic of it is that it is 
based on a client-server architecture, where clients collect PETs 
and send them to the server for mining. With the help of this 
framework, we can mine API protocols from application 
programs dynamically with little manpower overhead. 
Additionally, accurate and complete API protocols may be 
achieved.  

The overview of NSpecMiner is illustrated in Figure 2, 
which mainly consists of a client and server. The client of 
NSpecMiner comprises a Proram Tracer and a Network 
Communication Module (NCM). The Program Tracer collects 
PETs from application programs and passes them to NCM. It 
gathers PETs based on instrumentation techniques, which insert 
binary codes into interested method bodies. Once an 
instrumented program is ran with test cases generated 
automatically or manually, the embedded codes will output 
information of method calls sequentially. Whatever 
instrumentation techniques and tools can be used in our 
framework (such as ASM [15], BCEL [16], Java agent [17] and 
Javassist [18]-[19]), provided that the format of output PETs 
can satisfy the requirement of NSpecMiner. After that, the client 
sends gathered PETs to the server via NCM, one method call 
after another. 

The server receives method calls sequentially through NCM 
from multiple clients and passes them to the module of API 
Protocol Mining (APM). The APM is a key module for our 

 

Figure 1 Functioning of NSpecMiner 



framework. It takes PETs as input and synthesizes API protocols 
based on sequential data mining techniques. For instance, [14], 
[20]-[23] mine API protocols based on Finite State Automaton 
(FSA). [24] models temporal specifications among Application 
Programming Interfaces (API) or Abstract Data Types (ADT) 
using Probabilistic Finite State Automaton (PFSA). Actually, 
whatever mining techniques based on sequential data can be 
used in our framework. In this paper, we utilize an online mining 
approach based on Markov model as an example to demonstrate 
the working principle of our framework. After that, 
NSpecMiner saves mined protocols on the sever through the 
module of API Protocol Storage (APS). Based on the protocols, 
our framework can provide various kinds of remote services, 
such as API protocol retrieval, program verification, etc. 

NSpecMiner uses the TCP for communication and UDP is 
an inadvisable choice, because only the TCP can provide a 
reliable delivery service. Based on the TCP, all method calls sent 
sequentially to the network can be received in correct order on 
the server side, which is crucial for API protocol mining.  

Via integrating the client tracer of NSpecMiner into widely 
used software, PETs will be sent to the server for mining 
automatically. The whole process is undergone in the 
background transparently. On the other hand, since the server 
can receive PETs from multiple clients (or programs), it is likely 
to achieve a large number of diverse PETs, which is essential for 
mining accurate and complete API protocols. 

III. MINING API PROTOCOL 

NSpecMiner is a generic framework, which can utilize 
various kinds of protocol mining techniques. In this paper, we 
use the online mining approach proposed by Chen et al. [25] as 

an example to demonstrate the working principle of our 
framework. 

Chen et al. [25] mined API protocols based on an extended 
Markov model with final probability (MCF). The formal 
definition of MCF is given below: 

Definition 1 (Markov chain with final probability). A Markov 
Chain with Final Probability (MCF) M is a 4-tuple (Q, τ, π, γ), 
where Q is a set of states, τ: Q×Q→[0, 1] is the transition 
probability function, which is always described using a 
transition matrix P, π: Q→[0, 1] is the probability distribution 
over initial states, γ: Q→[0, 1] is the probability distribution over 
final states. The functions π and γ must satisfy the requirements: 

∑qQ π(q) = 1 and ∑qQ γ(q) = 1. 

Compared with traditional Markov model, MCF has an 
additional probability distribution over final states (Final 
Probability), which indicates how probable a chance process 
will end with a state. 

Relying on the MCF, Chen et al. modeled API protocols by 
regarding states as methods and transitions as temporal 
relationships among methods. Figure 3 shows an example API 
protocol of Java class java.io.FileOutputStream described 

 

Figure 2 Overview of NSpecMiner 
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Figure 3 API protocol of Java class FileOutputStream described using MCF. 



using the MCF. As we can see, the rounded rectangles are states, 
which are labeled with method signatures above a line. Arrows 
denote transitions, which are labeled with transition 
probabilities. InitPro and FinalPro are initial probability and 
final probability, respectively. What should be noted is that all 
states have properties InitPro and FinalPro. We omit the ones 
whose value is zero. 

Given a repository of PETs R, Chen et al. learned MCFs 
from R using an online approach. In detail, they received a 
method call of each PET sequentially. For each method call, 
they evolved the corresponding MCF until it was good enough. 
The online approach has minimum space overhead. Additionally, 
since it can evolve API protocols persistently, accurate and 
complete protocols may be achieved. 

Finally, they transformed a MCF to a Nondeterministic 
Finite-state Automaton (NFA) by discarding infrequent 
transitions and probabilities. The final API protocols described 
using NFA can be used for program verification, testing, 
documentation, etc. 

IV. INSTRUMENTATION BALANCE 

The time overhead incurred by instrumentation may cause 
performance issue to software running on the client machine and 
discount the practical usability of our framework. To mitigate 
the problem, we propose to balance instrumentation overhead 
among multiple clients. 

Let’s assume that we aim to mine API protocols of a set of 
classes U. It may cause much runtime overhead if we instrument 
all the classes in a single application program. To avoid this 
situation, we distribute the instrumentation task to multiple 
client programs via the instrumentation set. Let A be a set of 
application programs required to be instrumented. Given a 
program 𝑎 ∈ 𝐴, the instrumentation set of a from U denoted by 
IMTD(𝑎, 𝑈) is a subset of U, i.e., IMTD(𝑎, 𝑈) ⊆ 𝑈. The public 
methods of a class c will be instrumented in a run of program a, 
only if 𝑐 ∈ IMTD(𝑎, 𝑈). Obviously, via assigning program 𝑎 a 
reasonable instrumentation set, we can confine its 
instrumentation overhead to an acceptable range. We perform 
this task based on the following method. First, we compute the 
size of the instrumentation set based on a function 𝜑: 𝐴 ⟶ 𝑁, 
which is given below: 

𝜑(𝑎) = {

𝜑1         𝑎 is a hard real − time progam            
𝜑2         𝑎 is a soft real − time program            
𝜑3         𝑎 is a non − time − critical  program

 

where 𝜑1, 𝜑2 and 𝜑3 are specified constant values and satisfy 
the requirement 𝜑1 < 𝜑2 < 𝜑3. Our consideration is that less 
classes should be instrumented for time-critical programs than 
non-time-critical programs. After that, we select classes from U  
and add them to IMTD(𝑎, 𝑈) . What should be noted is that 
classes in U may not be covered by program a. To address this 
problem, we select classes from CMTD(𝑎)⋂𝑈 , where 
CMTD(𝑎)  is the set of classes covered by program a. 
Additionally, the following cases are considered: 

1. CMTD(𝑎)⋂𝑈 = ∅, let IMTD(𝑎, 𝑈) = ∅. 

2. CMTD(𝑎)⋂𝑈 ≠ ∅ ∧ |CMTD(𝑎)⋂𝑈| ≤  𝜑(𝑎) , let 
IMTD(𝑎, 𝑈) = CMTD(𝑎)⋂𝑈. 

3. CMTD(𝑎)⋂𝑈 ≠ ∅ ∧ |CMTD(𝑎)⋂𝑈| >  𝜑(𝑎) , we 
select 𝜑(𝑎) classes from CMTD(𝑎)⋂𝑈 based on a class 
selection algorithm and add them to IMTD(𝑎, 𝑈). 

In words, if the number of classes included in CMTD(𝑎)⋂𝑈 
is less than 𝜑(𝑎) , we add all classes in CMTD(𝑎)⋂𝑈  to 
IMTD(𝑎, 𝑈) . Otherwise, we select as many as 𝜑(𝑎)  classes 
from CMTD(𝑎)⋂𝑈. 

In order to collect enough PETs, local protocol miners may 
instrument all classes in U at one time, which may cause much 
runtime overhead. Relying on the strategy of instrumentation 
balance, we can collect as many PETs as local protocol miners 
with little runtime overhead, which improves the practical 
usability of our framework significantly. It should be noted that 
our instrumentation balance strategy is based on the granularity 
of classes rather than methods. The reason for this is that partial 
instrumentation of a class will cause imperfect PETs which may 
lead to inaccurate API protocols [26].  

V. API PROTOCOL EVOLVEMENT 

The network load overhead incurred by our framework may 
increase the cost of mining API protocols. In this section, we 
introduce our strategy of API protocol evolvement, which can 
reduce the network load overhead to some extent. 

It should be noted that, there is no necessity to evolve API 
protocols persistently. Once a protocol is good enough, we can 
stop refining it, which can reduce the network load overhead and 
save computational resources on both client and server sides. In 
order to accomplish the task, a metric used to measure the 
goodness of API protocols is required. Currently, there does not 
exist such a metric and measuring the goodness of API protocols 
accurately and automatically is challenging. In this work, we 
perform the task approximately based on the following heuristic: 
let 𝑐 be a class, 𝑝 be the API protocol of 𝑐, which is described 
using a MCF: (Q, τ, π, γ). If the following requirements (Good-
Enough Requirement) are satisfied, we believe 𝑝 is good enough.  

• 𝑄 ⊇ PM(𝑐) , where PM(𝑐)  denotes the set of public 
methods of class c (a single-object API protocol 
subsumes only public methods of a class); 

• p keeps 𝛿 − 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  in the continuous evolvement 
for 𝑇𝑒  times, where 𝑇𝑒  is the specified Evolving 
Threshold. Let 𝑝𝑖 : (𝑄𝑖 , 𝜏𝑖 , 𝜋𝑖 , 𝛾𝑖)  and 
𝑝𝑖+1: (𝑄𝑖+1, 𝜏𝑖+1, 𝜋𝑖+1, 𝛾𝑖+1)  be the API protocols 
achieved before and after the ith evolvement of p 
respectively. We say p is 𝛿 − 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  in this 
evolvement if it satisfies the following requirements: 1) 
𝑄𝑖 = 𝑄𝑖+1; 2) |𝜏𝑖(𝑡) − 𝜏𝑖+1(𝑡)| ≤ 𝛿, where t denotes a 
common transition of 𝑝𝑖  and 𝑝𝑖+1 ; 3) | 𝜋𝑖(𝑞) −
𝜋𝑖+1(𝑞)| ≤ 𝛿 , where 𝑞  is a common state of 𝑝𝑖  and 
𝑝𝑖+1; and 4) |𝛾𝑖(𝑞) − 𝛾𝑖+1(𝑞)| ≤ 𝛿. 

In detail, for each API protocol 𝑝, we maintain two variables 
𝑛𝑝 and 𝑛𝑒. The former records the number of methods included 

in 𝑝. The latter denotes the count of continuous evolvement, in 
which 𝑝 is 𝛿 − 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. At the end of each evolvement, we 
update 𝑛𝑝. As to 𝑛𝑒, we compare the protocols achieved before 

and after each evolvement. If 𝑝 is 𝛿 − 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, we have 𝑛𝑒 ←
𝑛𝑒 + 1, otherwise 𝑛𝑒 ← 0 . Once 𝑛𝑝 ≥ 𝑛𝑐  and 𝑛𝑒 ≥ 𝑇𝑒  where 



𝑛𝑐  is the number of public methods included in class 𝑐 , we 
notify all clients to stop instrumenting class 𝑐. Since no more 
PETs regarding 𝑐 will be received, the evolvement of 𝑝 on the 
server side will stop automatically. 

In some cases, we need to restart the evolvement of good-
enough protocols. For example, let’s assume that 𝑝 is a good-
enough protocol of class 𝑐 . The API protocol of 𝑐  may be 
changed in the upgraded version of 𝑐. Thus, we should restart 
the evolvement of 𝑝  until the good-enough requirement is 
satisfied in terms of the latest version of 𝑐. This task can be 
accomplished by notifying clients to restart instrumenting class 
𝑐. 

VI. PRELIMINARY RESULTS 

In order to investigate the feasibility of our technique, we 
implemented NSpecMiner based on a previous prototype tool 
ISpecMiner [25] and called the novel tool ISpecMiner+. 
ISpecMiner and ISpecMiner+ are nearly the same: 1) both tools 
employ the Java agent [17] technique to instrument client 
programs; 2) both tools mine API protocols based on the online 
approach proposed by Chen et al. [25]. The only difference is 
that ISpecMiner is a local miner, while ISpecMiner+ is a 
distributed API protocol miner.  

To evaluate our approach, we performed a comparison test 
with ISpecMiner and ISpecMiner+. Our experiment proceeds 
as follows. We used ISpecMiner and ISpecMiner+ to mine API 
protocols from a same set of programs. After that, we 
investigated API protocols achieved by ISpecMiner and 
ISpecMiner+, respectively. The experimental setup was exactly 
the same as that of [27]: 1) the subject programs used for mining 
were four real-world Java programs FreeMind, RapidMiner, 
SQuirreL SQL Client and OpenProj; and 2) 10 JDK classes from 
java.io and java.util were instrumented and investigated. 
Detailed information about the experimental setup please refer 
to [27]. ISpecMiner was configured to run each subject 
programs once sequentially. For each program, ISpecMiner 
instrumented all 10 JDK classes. Since ISpecMiner mines API 
protocols using an online approach, results of each ran will be 
merged automatically. ISpecMiner+ worked in a LAN 
environment similar to that shown in Figure 1, which consists of 
a server and four clients. Information of the server and client 
computers is summarized in Table I. On the server, 
ISpecMiner+ was configured to receive PETs from port 5123. 
Each client computer ran a subject program and instrumented all 
10 JDK classes. To avoid biases, a subject program was feed 
with the same test cases under ISpecMiner and ISpecMiner+.  

By analyzing experimental results, we found that API 
protocols mined by ISpecMiner and ISpecMiner+ were exactly 

the same. It indicates that NSpecMiner is effective to mine 
useful API protocols as local miners. While our technique is able 
to gather PETs concurrently from multiple clients. For each 
client user, only one subject program is required to run. If we 
integrate the client tracer of NSpecMiner into daily used 
software, API protocols can be synthesized on the server 
automatically and transparently. Little manpower overhead is 
required to exclusively run client programs for gathering PETs. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed a generic DPM framework 
NSpecMiner. The most distinguishing characteristic of our 
framework is that it is based on a client-server architecture. The 
distributed technology has been used widely in many aspects of 
software development, such as the Cooperative Bug Isolation 
Project [28], which collects program runtime information for 
tracking down bugs using a method similar to ours. However, to 
the best of our knowledge, NSpecMiner is the first DPM 
framework based on the distributed technology. As elaborated 
in this work, the client-server architecture can mitigate many 
limitations of DPM techniques, such as the overfitting problem 
incurred by scarce PETs, the difficulty to be automated, much 
runtime overhead caused by instrumentation, etc. Compared 
with local dynamic miners, NSpecMiner is able to mine 
accurate and complete API protocols with much lower cost, 
which increases the practical usability of DPM techniques 
significantly. In the evaluation, we performed a comparison test 
with local API protocol miners and our framework. Preliminary 
results show that our framework is effective to mine useful API 
protocols as local miners. While NSpecMiner is able to gather 
PETs concurrently from multiple clients and other advantages 
of the distributed technology will further benefit DPM 
significantly. If we integrate the client tracer of NSpecMiner 
into daily used software, API protocols can be synthesized on 
the server automatically and transparently. Little manpower 
overhead is required. 

In conclusion, the distributed technology is significantly 
valuable for DPM and may promote its applications in industrial 
practice. Although the distributed technology is a common 
approach, there exist many particular challenges while using this 
approach for DPM, such as the strategy of instrumentation 
balance, the evolvement of API protocols, etc., which deserve 
much more research effort. Although some unforeseen issues 
regarding scalability, privacy and security may be raised when 
using our framework in practice, we are confident that they can 
be resolved relying on today’s available technology. 
Additionally, along with the progress of network technology, 
our framework will be more useful. In this work, we presented 
a general view of NSpecMiner and only a preliminary 
evaluation result was given. Detailed discussions and more 
extensive evaluations of our framework are left as an extension 
of this work. 
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