
Distributed API Protocol Mining

Deng Chen1, a, Yanduo Zhang1, b, Wei Wei1, c, Rongcun Wang2, d, Xiaolin Li1, e, Shixun Wang3, f, Rubing Huang4, g
1 Hubei Provincial Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, P.R. China

2 School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, P.R. China
3 School of Computer and Information Engineering, Henan Normal University, Xinxiang, P.R. China

4 School of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang, P.R. China
a dchen@wit.edu.cn

b zhangyanduo@hotmail.com
c weiwei@huawei-elec.com

d rcwang@hust.edu.cn
e 932233986@qq.com
f wsxun@hust.edu.cn

g rbhuang@mail.ujs.edu.cn

Abstract—Dynamic Protocol Mining (DPM) techniques are a

promising approach to infer useful API protocols automatically.

However, their results are biased to input test cases and the

instrumentation overhead discounts their usability in industrial

practice. In this paper, we propose a distributed dynamic protocol

mining framework NSpecMiner. Our framework is based on a

client-server architecture, where the client tracer gathers

Program Execution Traces (PETs) and sends them to the server

for mining. Mined protocols are saved on the server to provide

various kinds of remote services, such as API protocol retrieval

and program verification, etc. Compared with local miners,

NSpecMiner has many advantages: 1) A large number of diverse

PETs are likely to be collected from multiple clients, which is

essential for mining accurate and complete API protocols. 2)

Instrumentation overhead can be balanced among multiple clients.

3) Via integrating the client tracer into widely used software, we

can mine API protocols transparently and automatically without

any human effort. To evaluate our technique, we performed a

comparison test with a local miner ISpecMiner and NSpecMiner.

Preliminary results show that our approach is effective to mine

useful API protocols as local miners. While our method is able to

gather PETs concurrently from multiple clients and other merits

of the distributed technology will further benefit DPM

significantly.

Keywords—program temporal specification; program dynamic

analysis; distributed specification mining; API protocol mining

I. INTRODUCTION

API protocols specify temporal constraints regarding the
order of calls of API methods. For example, calling peek() on
java.util.Stack without a preceding push() gives an
EmptyStackException, and calling next() on java.util.Iterator
without checking whether there is a next element with hasNext()
can result in a NoSuchElementException. API clients that
violate such protocols do not obtain the desired behaviors and
may even crash the program [1].

API protocols are beneficial for many tasks of software
development, such as program documentation, understanding,
testing, verification, etc. However, programmers are reluctant to
write API protocols. Even when available, there is no guarantee

of their consistence, completeness, and correctness. Dynamic
Protocol Mining (DPM) [2]-[5] is a promising approach to infer
useful API protocols automatically. It always works in a two-
phase mode: 1) Program Execution Traces (PETs) are gathered
from client programs leveraging instrumentation techniques. 2)
API protocols are synthesized from PETs based on various kinds
of sequential data mining techniques. Compared with Static
Protocol Mining techniques (SPM) [6]-[13], DPM can achieve
more accurate results based on runtime information.
Additionally, it can be used more extensively, especially when
source codes are unavailable. Furthermore, many tricky
problems with SPM, such as infeasible paths, complicated data
structures and pointer aliasing can be avoided. However, the
following drawbacks limit its applications in industrial practice:
1) The effect of DPM largely depends upon input test cases. If
an improper set of test cases is selected, DPM may neglect many
program paths and cause partial and inaccurate API protocols. 2)
In order to gather PETs, DPM is required to run client programs,
which may be difficult to be automated in some cases. 3) The
runtime overhead caused by instrumentation techniques may
discount the practical usability of DPM. 4) Existing DPM tools
(such as ADABU [14]) always work in a manner as follows. First,
they collect PETs from client programs using a tracer and then
store the traces into a trace file. Then, they take the trace file as
input and synthesize API protocols. Each run of a client program
will generate a trace file and corresponding protocols. Results of
multiple runs cannot be merged. What is worse is that mined
protocols are biased to input trace files. Additionally, if PETs
gathered from a program is scarce, we may achieve partial and
inaccurate API protocols. Even though mined protocols can be
merged, to gather enough PETs for mining, we should manually
run a large number of programs one by one, which will result in
significant manpower overhead and is unacceptable in practice.

This paper aims to improve the DPM techniques and
promote their applications in industrial practice. We present a
DPM framework NSpecMiner, which is based on a client-server
architecture. The client is a tracer, which collects PETs and
sends them to the server for mining. The server receives PETs
and synthesizes API protocols. After that, the mined protocols
are stored on the server to provide various kinds of remote
services, such as API protocol retrieval and program verification,
etc. The functioning of our framework is illustrated in Figure 1. (DOI reference number: 10.18293/SEKE2017-089)

mailto:%7d@hust.edu.cn
mailto:zhangyanduo@hotmail.com
mailto:weiwei@huawei-elec.com
mailto:rcwang@hust.edu.cn
https://mail.hust.edu.cn/coremail/XJS/pab/view.jsp?sid=BAfRvTDDxPcsQVkpOvDDoVUcpfDhGzxM&totalCount=22&view_no=5&puid=17&gid=
mailto:wsxun@hust.edu.cn

Compared with local miners (such as ADABU), this architecture
can benefit protocol mining in many ways: 1) Since the server
can receive PETs from different clients and programs (as shown
in Figure 1, the server receives PETs from n clients, which run
different programs respectively, such as FreeMind,
RapidMiner, SQuirreL and OpenProj), a large number of
diverse PETs are likely to be collected efficiently, which is
essential for mining accurate and complete API protocols. 2)
The instrumentation overhead can be balanced among multiple
clients based on a divide-and-conquer strategy. 3) This
architecture is flexible, because client tracers based on whatever
instrumentation techniques can send PETs to the server for
mining if their formats satisfy requirements. 4) Via integrating
the client tracer into daily used software, the task of mining
protocols can be completely automated. On the client side, once
the software is run by an end user, PETs will be sent to the server
for mining automatically in the background. The whole mining
process is transparent to software users. Little extra manpower
is required to run client programs exclusively for gathering PETs.
On the server side, thousands of millions of PETs may be
received from different clients per second and perfect API
protocols will be learned, which may cost several months by
local miners.

The contributions of this paper are:

• A dynamic API protocol mining framework
NSpecMiner based on a client-server architecture is
proposed.

• A strategy of balancing instrumentation overhead is
proposed.

• Experiments are conducted to evaluate our technique.

The rest of this paper is organized as follows: Section 2
presents the overview of our framework. Section 3 introduces an

example API protocol mining technique used in this work.
Section 4 elaborates our strategy of instrumentation balance.
Section 5 presents our strategy of API protocol evolvement.
Section 6 evaluates our technique and demonstrates preliminary
results. Section 7 presents our conclusions and future work.

II. OVERVIEW OF NSPECMINER

NSpecMiner is a generic dynamic API protocol mining
framework. The distinguishing characteristic of it is that it is
based on a client-server architecture, where clients collect PETs
and send them to the server for mining. With the help of this
framework, we can mine API protocols from application
programs dynamically with little manpower overhead.
Additionally, accurate and complete API protocols may be
achieved.

The overview of NSpecMiner is illustrated in Figure 2,
which mainly consists of a client and server. The client of
NSpecMiner comprises a Proram Tracer and a Network
Communication Module (NCM). The Program Tracer collects
PETs from application programs and passes them to NCM. It
gathers PETs based on instrumentation techniques, which insert
binary codes into interested method bodies. Once an
instrumented program is ran with test cases generated
automatically or manually, the embedded codes will output
information of method calls sequentially. Whatever
instrumentation techniques and tools can be used in our
framework (such as ASM [15], BCEL [16], Java agent [17] and
Javassist [18]-[19]), provided that the format of output PETs
can satisfy the requirement of NSpecMiner. After that, the client
sends gathered PETs to the server via NCM, one method call
after another.

The server receives method calls sequentially through NCM
from multiple clients and passes them to the module of API
Protocol Mining (APM). The APM is a key module for our

Figure 1 Functioning of NSpecMiner

framework. It takes PETs as input and synthesizes API protocols
based on sequential data mining techniques. For instance, [14],
[20]-[23] mine API protocols based on Finite State Automaton
(FSA). [24] models temporal specifications among Application
Programming Interfaces (API) or Abstract Data Types (ADT)
using Probabilistic Finite State Automaton (PFSA). Actually,
whatever mining techniques based on sequential data can be
used in our framework. In this paper, we utilize an online mining
approach based on Markov model as an example to demonstrate
the working principle of our framework. After that,
NSpecMiner saves mined protocols on the sever through the
module of API Protocol Storage (APS). Based on the protocols,
our framework can provide various kinds of remote services,
such as API protocol retrieval, program verification, etc.

NSpecMiner uses the TCP for communication and UDP is
an inadvisable choice, because only the TCP can provide a
reliable delivery service. Based on the TCP, all method calls sent
sequentially to the network can be received in correct order on
the server side, which is crucial for API protocol mining.

Via integrating the client tracer of NSpecMiner into widely
used software, PETs will be sent to the server for mining
automatically. The whole process is undergone in the
background transparently. On the other hand, since the server
can receive PETs from multiple clients (or programs), it is likely
to achieve a large number of diverse PETs, which is essential for
mining accurate and complete API protocols.

III. MINING API PROTOCOL

NSpecMiner is a generic framework, which can utilize
various kinds of protocol mining techniques. In this paper, we
use the online mining approach proposed by Chen et al. [25] as

an example to demonstrate the working principle of our
framework.

Chen et al. [25] mined API protocols based on an extended
Markov model with final probability (MCF). The formal
definition of MCF is given below:

Definition 1 (Markov chain with final probability). A Markov
Chain with Final Probability (MCF) M is a 4-tuple (Q, τ, π, γ),
where Q is a set of states, τ: Q×Q→[0, 1] is the transition
probability function, which is always described using a
transition matrix P, π: Q→[0, 1] is the probability distribution
over initial states, γ: Q→[0, 1] is the probability distribution over
final states. The functions π and γ must satisfy the requirements:

∑qQ π(q) = 1 and ∑qQ γ(q) = 1.

Compared with traditional Markov model, MCF has an
additional probability distribution over final states (Final
Probability), which indicates how probable a chance process
will end with a state.

Relying on the MCF, Chen et al. modeled API protocols by
regarding states as methods and transitions as temporal
relationships among methods. Figure 3 shows an example API
protocol of Java class java.io.FileOutputStream described

Figure 2 Overview of NSpecMiner

0.9 0.01 close()

FinalPro = 0.98

0.99

write(byte[], int, int)

FinalPro = 0.01
InitPro = 1

FinalPro = 0.01

FileOutputStream(String)

0.08

Figure 3 API protocol of Java class FileOutputStream described using MCF.

using the MCF. As we can see, the rounded rectangles are states,
which are labeled with method signatures above a line. Arrows
denote transitions, which are labeled with transition
probabilities. InitPro and FinalPro are initial probability and
final probability, respectively. What should be noted is that all
states have properties InitPro and FinalPro. We omit the ones
whose value is zero.

Given a repository of PETs R, Chen et al. learned MCFs
from R using an online approach. In detail, they received a
method call of each PET sequentially. For each method call,
they evolved the corresponding MCF until it was good enough.
The online approach has minimum space overhead. Additionally,
since it can evolve API protocols persistently, accurate and
complete protocols may be achieved.

Finally, they transformed a MCF to a Nondeterministic
Finite-state Automaton (NFA) by discarding infrequent
transitions and probabilities. The final API protocols described
using NFA can be used for program verification, testing,
documentation, etc.

IV. INSTRUMENTATION BALANCE

The time overhead incurred by instrumentation may cause
performance issue to software running on the client machine and
discount the practical usability of our framework. To mitigate
the problem, we propose to balance instrumentation overhead
among multiple clients.

Let’s assume that we aim to mine API protocols of a set of
classes U. It may cause much runtime overhead if we instrument
all the classes in a single application program. To avoid this
situation, we distribute the instrumentation task to multiple
client programs via the instrumentation set. Let A be a set of
application programs required to be instrumented. Given a
program 𝑎 ∈ 𝐴, the instrumentation set of a from U denoted by
IMTD(𝑎, 𝑈) is a subset of U, i.e., IMTD(𝑎, 𝑈) ⊆ 𝑈. The public
methods of a class c will be instrumented in a run of program a,
only if 𝑐 ∈ IMTD(𝑎, 𝑈). Obviously, via assigning program 𝑎 a
reasonable instrumentation set, we can confine its
instrumentation overhead to an acceptable range. We perform
this task based on the following method. First, we compute the
size of the instrumentation set based on a function 𝜑: 𝐴 ⟶ 𝑁,
which is given below:

𝜑(𝑎) = {

𝜑1 𝑎 is a hard real − time progam
𝜑2 𝑎 is a soft real − time program
𝜑3 𝑎 is a non − time − critical program

where 𝜑1, 𝜑2 and 𝜑3 are specified constant values and satisfy
the requirement 𝜑1 < 𝜑2 < 𝜑3. Our consideration is that less
classes should be instrumented for time-critical programs than
non-time-critical programs. After that, we select classes from U
and add them to IMTD(𝑎, 𝑈) . What should be noted is that
classes in U may not be covered by program a. To address this
problem, we select classes from CMTD(𝑎)⋂𝑈 , where
CMTD(𝑎) is the set of classes covered by program a.
Additionally, the following cases are considered:

1. CMTD(𝑎)⋂𝑈 = ∅, let IMTD(𝑎, 𝑈) = ∅.

2. CMTD(𝑎)⋂𝑈 ≠ ∅ ∧ |CMTD(𝑎)⋂𝑈| ≤ 𝜑(𝑎) , let
IMTD(𝑎, 𝑈) = CMTD(𝑎)⋂𝑈.

3. CMTD(𝑎)⋂𝑈 ≠ ∅ ∧ |CMTD(𝑎)⋂𝑈| > 𝜑(𝑎) , we
select 𝜑(𝑎) classes from CMTD(𝑎)⋂𝑈 based on a class
selection algorithm and add them to IMTD(𝑎, 𝑈).

In words, if the number of classes included in CMTD(𝑎)⋂𝑈
is less than 𝜑(𝑎) , we add all classes in CMTD(𝑎)⋂𝑈 to
IMTD(𝑎, 𝑈) . Otherwise, we select as many as 𝜑(𝑎) classes
from CMTD(𝑎)⋂𝑈.

In order to collect enough PETs, local protocol miners may
instrument all classes in U at one time, which may cause much
runtime overhead. Relying on the strategy of instrumentation
balance, we can collect as many PETs as local protocol miners
with little runtime overhead, which improves the practical
usability of our framework significantly. It should be noted that
our instrumentation balance strategy is based on the granularity
of classes rather than methods. The reason for this is that partial
instrumentation of a class will cause imperfect PETs which may
lead to inaccurate API protocols [26].

V. API PROTOCOL EVOLVEMENT

The network load overhead incurred by our framework may
increase the cost of mining API protocols. In this section, we
introduce our strategy of API protocol evolvement, which can
reduce the network load overhead to some extent.

It should be noted that, there is no necessity to evolve API
protocols persistently. Once a protocol is good enough, we can
stop refining it, which can reduce the network load overhead and
save computational resources on both client and server sides. In
order to accomplish the task, a metric used to measure the
goodness of API protocols is required. Currently, there does not
exist such a metric and measuring the goodness of API protocols
accurately and automatically is challenging. In this work, we
perform the task approximately based on the following heuristic:
let 𝑐 be a class, 𝑝 be the API protocol of 𝑐, which is described
using a MCF: (Q, τ, π, γ). If the following requirements (Good-
Enough Requirement) are satisfied, we believe 𝑝 is good enough.

• 𝑄 ⊇ PM(𝑐) , where PM(𝑐) denotes the set of public
methods of class c (a single-object API protocol
subsumes only public methods of a class);

• p keeps 𝛿 − 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 in the continuous evolvement
for 𝑇𝑒 times, where 𝑇𝑒 is the specified Evolving
Threshold. Let 𝑝𝑖 : (𝑄𝑖 , 𝜏𝑖 , 𝜋𝑖 , 𝛾𝑖) and
𝑝𝑖+1: (𝑄𝑖+1, 𝜏𝑖+1, 𝜋𝑖+1, 𝛾𝑖+1) be the API protocols
achieved before and after the ith evolvement of p
respectively. We say p is 𝛿 − 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 in this
evolvement if it satisfies the following requirements: 1)
𝑄𝑖 = 𝑄𝑖+1; 2) |𝜏𝑖(𝑡) − 𝜏𝑖+1(𝑡)| ≤ 𝛿, where t denotes a
common transition of 𝑝𝑖 and 𝑝𝑖+1 ; 3) | 𝜋𝑖(𝑞) −
𝜋𝑖+1(𝑞)| ≤ 𝛿 , where 𝑞 is a common state of 𝑝𝑖 and
𝑝𝑖+1; and 4) |𝛾𝑖(𝑞) − 𝛾𝑖+1(𝑞)| ≤ 𝛿.

In detail, for each API protocol 𝑝, we maintain two variables
𝑛𝑝 and 𝑛𝑒. The former records the number of methods included

in 𝑝. The latter denotes the count of continuous evolvement, in
which 𝑝 is 𝛿 − 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. At the end of each evolvement, we
update 𝑛𝑝. As to 𝑛𝑒, we compare the protocols achieved before

and after each evolvement. If 𝑝 is 𝛿 − 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, we have 𝑛𝑒 ←
𝑛𝑒 + 1, otherwise 𝑛𝑒 ← 0 . Once 𝑛𝑝 ≥ 𝑛𝑐 and 𝑛𝑒 ≥ 𝑇𝑒 where

𝑛𝑐 is the number of public methods included in class 𝑐 , we
notify all clients to stop instrumenting class 𝑐. Since no more
PETs regarding 𝑐 will be received, the evolvement of 𝑝 on the
server side will stop automatically.

In some cases, we need to restart the evolvement of good-
enough protocols. For example, let’s assume that 𝑝 is a good-
enough protocol of class 𝑐 . The API protocol of 𝑐 may be
changed in the upgraded version of 𝑐. Thus, we should restart
the evolvement of 𝑝 until the good-enough requirement is
satisfied in terms of the latest version of 𝑐. This task can be
accomplished by notifying clients to restart instrumenting class
𝑐.

VI. PRELIMINARY RESULTS

In order to investigate the feasibility of our technique, we
implemented NSpecMiner based on a previous prototype tool
ISpecMiner [25] and called the novel tool ISpecMiner+.
ISpecMiner and ISpecMiner+ are nearly the same: 1) both tools
employ the Java agent [17] technique to instrument client
programs; 2) both tools mine API protocols based on the online
approach proposed by Chen et al. [25]. The only difference is
that ISpecMiner is a local miner, while ISpecMiner+ is a
distributed API protocol miner.

To evaluate our approach, we performed a comparison test
with ISpecMiner and ISpecMiner+. Our experiment proceeds
as follows. We used ISpecMiner and ISpecMiner+ to mine API
protocols from a same set of programs. After that, we
investigated API protocols achieved by ISpecMiner and
ISpecMiner+, respectively. The experimental setup was exactly
the same as that of [27]: 1) the subject programs used for mining
were four real-world Java programs FreeMind, RapidMiner,
SQuirreL SQL Client and OpenProj; and 2) 10 JDK classes from
java.io and java.util were instrumented and investigated.
Detailed information about the experimental setup please refer
to [27]. ISpecMiner was configured to run each subject
programs once sequentially. For each program, ISpecMiner
instrumented all 10 JDK classes. Since ISpecMiner mines API
protocols using an online approach, results of each ran will be
merged automatically. ISpecMiner+ worked in a LAN
environment similar to that shown in Figure 1, which consists of
a server and four clients. Information of the server and client
computers is summarized in Table I. On the server,
ISpecMiner+ was configured to receive PETs from port 5123.
Each client computer ran a subject program and instrumented all
10 JDK classes. To avoid biases, a subject program was feed
with the same test cases under ISpecMiner and ISpecMiner+.

By analyzing experimental results, we found that API
protocols mined by ISpecMiner and ISpecMiner+ were exactly

the same. It indicates that NSpecMiner is effective to mine
useful API protocols as local miners. While our technique is able
to gather PETs concurrently from multiple clients. For each
client user, only one subject program is required to run. If we
integrate the client tracer of NSpecMiner into daily used
software, API protocols can be synthesized on the server
automatically and transparently. Little manpower overhead is
required to exclusively run client programs for gathering PETs.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a generic DPM framework
NSpecMiner. The most distinguishing characteristic of our
framework is that it is based on a client-server architecture. The
distributed technology has been used widely in many aspects of
software development, such as the Cooperative Bug Isolation
Project [28], which collects program runtime information for
tracking down bugs using a method similar to ours. However, to
the best of our knowledge, NSpecMiner is the first DPM
framework based on the distributed technology. As elaborated
in this work, the client-server architecture can mitigate many
limitations of DPM techniques, such as the overfitting problem
incurred by scarce PETs, the difficulty to be automated, much
runtime overhead caused by instrumentation, etc. Compared
with local dynamic miners, NSpecMiner is able to mine
accurate and complete API protocols with much lower cost,
which increases the practical usability of DPM techniques
significantly. In the evaluation, we performed a comparison test
with local API protocol miners and our framework. Preliminary
results show that our framework is effective to mine useful API
protocols as local miners. While NSpecMiner is able to gather
PETs concurrently from multiple clients and other advantages
of the distributed technology will further benefit DPM
significantly. If we integrate the client tracer of NSpecMiner
into daily used software, API protocols can be synthesized on
the server automatically and transparently. Little manpower
overhead is required.

In conclusion, the distributed technology is significantly
valuable for DPM and may promote its applications in industrial
practice. Although the distributed technology is a common
approach, there exist many particular challenges while using this
approach for DPM, such as the strategy of instrumentation
balance, the evolvement of API protocols, etc., which deserve
much more research effort. Although some unforeseen issues
regarding scalability, privacy and security may be raised when
using our framework in practice, we are confident that they can
be resolved relying on today’s available technology.
Additionally, along with the progress of network technology,
our framework will be more useful. In this work, we presented
a general view of NSpecMiner and only a preliminary
evaluation result was given. Detailed discussions and more
extensive evaluations of our framework are left as an extension
of this work.

ACKNOWLEDGMENT

This work was supported by the Youths Science Foundation
of Wuhan Institute of Technology (No. k201622), Surveying
and Mapping Geographic Information Public Welfare Scientific
Research Special Industry (No. 201412014), Educational
Commission of Hubei Province (Q20151504), National Natural

TABLE I. INFORMATION OF NETWORK COMPUTERS

Type Number Information

Server 1
Intel(R) Core(TM) i7-3770k CPU 3.9GHz, 8GB of

memory, running Windows 7

Client 2
Intel(R) Core(TM) i3-2100 CPU 3.1GHz, 3GB of

memory, running Windows XP

Client 1
Intel(R) Core(TM)2 Duo CPU 2.93GHz, 2GB of

memory, running Windows XP

Client 1
Intel(R) Core(TM)2 Duo CPU 2.93GHz, 2GB of

memory, running Windows 7

Science Foundation of China (No. 41501505, 61502355 and
61502354) and the Key Program of Higher Education
Institutions of Henan Province (No. 17A520040).

REFERENCES

[1] M. Pradel, T.R. Gross, “Leveraging test generation and specification
mining for automated bug detection without false positives,” in
Proceedings of the 34th International Conference on Software
Engineering, Zurich, Switzerland, pp. 288-298, 2012.

[2] M. P. Robillard, E. Bodden, D. Kawrykow, et al., “Automated API
property inference techniques,” IEEE Transactions on Software
Engineering, 2013, 39 (5): 613-637.

[3] M. Gabel, Z. Su, “Javert: fully automatic mining of general temporal

properties from dynamic traces,” in Proceedings of the 16th ACM

SIGSOFT International Symposium on Foundations of Software

Engineering, ACM, Atlanta, 2008.

[4] D. Chen, Y. Zhang, R. Wang, et al., “Extracting more object usage

scenarios for API protocol mining,” Proceedings of the 27th International

Conference on Software Engineering and Knowledge Engineering, 2015:

607-612.

[5] D. Chen, Y. Zhang, R. Wang, et al., “Mining API protocols based on a

balanced probabilistic model,” Proceedings of the 12th International

Conference on Fuzzy Systems and Knowledge Discovery, 2015:

2276 - 2282.
[6] M.K. Ramanathan, A. Grama, S. Jagannathan, “Static specification

inference using predicate mining,” SIGPLAN Not., vol. 42, pp. 123-134,
2007.

[7] S. Shoham, Y. Eran, S. Fink, et al., “Static specification mining using
automata-based abstractions,” in Proceedings of the 2007 International
Symposium on Software Testing and Analysis, ACM, London, 2007.

[8] M. Di Penta, L. Cerulo, L. Aversano, “The life and death of statically
detected vulnerabilities: An Empirical Study,” Information and Software
Technology, vol. 51, pp. 1469-1484, 2009.

[9] S. Thummalapenta, T. Xie, “Alattin: mining alternative patterns for defect
detection,” Automated Software Engineering, vol. 18, pp. 293-323, 2011.

[10] D. Lo, G. Ramalingam, V.P. Ranganath, et al., “Mining quantified
temporal rules: formalism, algorithms, and evaluation,” Science of
Computer Programming, vol. 77, pp. 743-759, 2012.

[11] Z. Li, Y. Zhou, “PR-Miner: automatically extracting implicit
programming rules and detecting violations in large software code,”
SIGSOFT Softw. Eng. Notes, vol. 30, pp. 306-315, 2005.

[12] M.K. Ramanathan, A. Grama, S. Jagannathan, “Path-sensitive inference
of function precedence protocols,” in Proceedings of the 29th
International Conference on Software Engineering, IEEE Computer
Society, 2007.

[13] M. Acharya, X. Tao, X. Jun, “Mining interface specifications for
generating checkable robustness properties,” in Proceedings of the 17th
International Symposium on Software Reliability Engineering, 2006.

[14] V. Dallmeier, C. Lindig, A. Wasylkowski, et al., “Mining object behavior
with ADABU,” in Proceedings of the 2006 International Workshop on
Dynamic Systems Analysis, ACM, Shanghai, 2006.

[15] ASM, http://asm.ow2.org, 2016.

[16] BCEL, http://commons.apache.org/proper/commons-bcel, 2016.

[17] P. Caserta, O. Zendra, “JBInsTrace: a tracer of Java and JRE classes at
basic-block granularity by dynamically instrumenting bytecode,” Science
of Computer Programming, vol. 79, pp. 116-125, 2014.

[18] S. Chiba, M. Nishizawa, “An easy-to-use toolkit for efficient Java
bytecode translators,” in Proceedings of the 2nd International Conference
on Generative Programming and Component Engineering,” Springer-
Verlag, New York, 2003.

[19] M. Tatsubori, T. Sasaki, S. Chiba, et al., “A bytecode translator for
distributed execution of “legacy” Java software,” in Proceedings of the
15th European Conference on Object-Oriented Programming, Springer-
Verlag, 2001.

[20] A. Wasylkowski, “Mining object usage models,” in Companion to the
Proceedings of the 29th International Conference on Software
Engineering, IEEE Computer Society, 2007.

[21] D. Lorenzoli, L. Mariani, M. Pezz, “Automatic generation of software
behavioral models,” in Proceedings of the 30th International Conference
on Software Engineering, ACM, Leipzig, 2008.

[22] R. Alur, P. Cerny, P. Madhusudan, et al., “Synthesis of interface
specifications for Java classes,” SIGPLAN Not., vol. 40, pp. 98-109,
2005.

[23] L.Mariani, F. Pastore, M. Pezze, “Dynamic Analysis for Diagnosing
Integration Faults,” IEEE Transactions on Software Engineering, 2011,
37(4): 486-508.

[24] G. Ammons, R. Bodik, J.R. Larus, “Mining specifications,” SIGPLAN
Not., vol. 37, pp. 4-16, 2002.

[25] D. Chen, R. Huang, B. Qu, et al., “Ming class temporal specification
dynamically based on extended Markov model,” International Journal of
Software Engineering and Knowledge Engineering, 2015, 25(3): 573-
604.

[26] J. Yang, D. Evans, D. Bhardwaj, et al., “Perracotta: mining temporal API
rules from imperfect traces,” in Proceedings of the 28th International
Conference on Software Engineering, ACM, Shanghai, 2006.

[27] D. Chen, Y. Zhang, R. Wang, et al., “Mining universal specification based
on probabilistic model,” Proceedings of the 27th International Conference
on Software Engineering and Knowledge Engineering, Pittsburgh, PA,
USA, 2015: 471-476.

[28] The Cooperative Bug Isolation Project, http://research.cs.wisc.edu/cbi/,
2016.

http://asm.ow2.org/
http://commons.apache.org/proper/commons-bcel
http://research.cs.wisc.edu/cbi/

