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Abstract—The behavior of the NSLPK authentication proto-
col is visualized using SMGA so that human users can visually
perceive non-trivial characteristics of the protocol by observing
graphical animations. These characteristics could be used as
lemmas to formally verify that the protocol enjoys desired
properties. We first carefully make a state picture design for
the NSLPK protocol to produce good graphical animations
with SMGA and then find out non-trivial characteristics of
the protocol by observing its graphical animations. Finally, we
also confirm the correctness of the guessed characteristics using
model checking. The work demonstrates that SMGA can be
applied to the wider class of systems/protocols, authentication
protocols in particular.
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I. INTRODUCTION

SMGA [1] has been developed to visualize graphical
animations of protocols. The main purpose of SMGA is
to help human users be able to visually perceive non-trivial
characteristics of the protocols by observing its graphical
animations because humans are good at visual perception [2].
Those characteristics can be used as lemmas to formally prove
that systems/protocols enjoy desired properties. Several case
studies have been conducted on some protocols with SMGA.
Among the protocols are shared-memory mutual exclusion
protocols [3], [4], [5], a distributed mutual exclusion proto-
col [6], and a communication protocol [1]. Any authentication
protocols have not been yet tackled with SMGA. It is worth
tackling authentication protocols with SMGA because such
protocols, such as TLS, are infrastructure in our highly
networked environment.

We aim at coming up with a brand-new way to visualize
the behavior of an authentication protocol called NSLPK [7].
Since it is known that state picture designs affect how
well human users can detect non-trivial characteristics of
protocols [5], we carefully make a state picture design of the
NSLPK protocol and produce graphical animations of NSLPK
based on the state picture design. By observing the graphical
animations, some non-trivial characteristics are guessed by
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human users and checked with Maude [8]. In the paper, we
mainly focus on how to make the state picture design of
the NSLPK protocol and how some characteristics could
be found by observing graphical animations with detailed
experiments.

Bui and Ogata [6] have revised SMGA so as to visualize
the network components in a distributed mutual exclusion
protocol, which is applied partly to our work. VA4JVM [9] is
a tool that can visualize outputs generated by Java Pathfinder
(JPF). JPF outputs are often long and hard to read, especially
when JPF finds something wrong, such as race-condition
and deadlock. VA4JVM supports some functionalities, such
as zooming, filtering, highlighting some specific parts of
JPF outputs. Those functionalities can help human users
observe some fragments that look interesting to be able to
better comprehend JPF outputs. Counterexample generated
by Maude LTL model checker can be graphically animated
by SMGA [10]. Although Maude LTL model checker is a
classical model checker and JPF is a software model checker,
it would be worth considering some VA4JVM functionalities,
such as zooming, filtering, and highlighting, to apply them
to the future version of SMGA.

We assume that readers are familiar with state machines
and Maude to some extent. NSLPK [7] is a modification of
the NSPK authentication protocol [11]. The NSLPK protocol
can be described as the following three message exchanges:

Init p → q : εq(np, p)
Resp q → p : εp(np, nq, q)
Ack p → q : εq(nq)

Each principal such as p and q has a private/public key
pair, and the public counterpart is shared with all principals
but the private one is only available to its owner. εp(m)
denotes the ciphertext obtained by encrypting the message
m with the principal p’s public key. np is a nonce (a random
number) generated by principal p. A nonce is a unique and
non-guessable number that is used only once.

II. FORMAL SPECIFICATION OF NSLPK

We first introduce the following three operators to represent
three kinds of ciphertexts used in the protocol:

op enc1 : Prin Nonce Prin -> Cipher1 .
op enc2 : Prin Nonce Nonce Prin -> Cipher2 .
op enc3 : Prin Nonce -> Cipher3 .



where Prin is the sort representing principals; Nonce is the
sort denoting the nonce numbers; Cipher1, Cipher2, and
Cipher3 are the sorts denoting three kinds of ciphertexts
contained in Init, Resp, and Ack messages, respectively.
Given principals p, q and a nonce np term enc1(q, np, p)
denote the ciphertext εq(np, p) obtained by encrypting np

and p with the principal q’s public key. enc2 and enc3 can
be understood likewise. Hereinafter, let us use Cipher1
(or Cipher2, or Cipher3) ciphertexts to refer to the
ciphertexts contained in Init (or Resp, or Ack) messages. A
Nonce is defined by the following operator:

op n : Prin Prin Rand -> Nonce .

where the third argument Rand is the sort denoting random
numbers that makes the nonce globally unique and unguess-
able. Given principals p, q and random value r, term n(p, q, r)
denote a nonce created by principal p for authenticating p
to principal q.

We specify three kinds of messages used in the NSLPK
protocol as follows:

op m1 : Prin Prin Prin Cipher1 -> Msg .
op m2 : Prin Prin Prin Cipher2 -> Msg .
op m3 : Prin Prin Prin Cipher3 -> Msg .

where Msg is the sort denoting messages. m1, m2, and m3
are the sorts denoting three kinds of messages Init, Resp,
and Ack, respectively. The first, second, and third arguments
of each of m1, m2, and m3 are the actual creator, the seeming
sender, and the receiver of the corresponding message. The
first argument is meta-information that is only available
to the outside observer and the principal that has sent the
corresponding message, and that cannot be forged by the
intruder; while the remaining arguments may be forged by
the intruder.

The network is modeled as a multiset of messages, which
the intruder can use as his/her storage. Any message that
has been sent or put once into the network is supposed to
be never deleted from the network because the intruder can
replay the message repeatedly, although the intruder can not
forge the first argument. Consequently, the empty network
(i.e., the empty multiset) means that no messages have been
sent.

In this paper, a state is expressed as a soup of observable
components. Let ms, rs, ns, and ps be the collections of
messages, random numbers, nonces, and principals, respec-
tively. ps may contain an intruder. Let c1s, c2s, and c3s
be the collections of Cipher1, Cipher2, and Cipher3
ciphertexts, respectively. To formalize the NSLPK protocol
as a state machine MNSLPK, we use the following observable
components:

• (nw : ms) - it says that the network is constructed by
ms,

• (cenc1 : c1s) - it says that the collection of Cipher1
ciphertexts gleaned by the intruder is c1s,

• (cenc2 : c2s) - it says that the collection of Cipher2
ciphertexts gleaned by the intruder is c2s,

• (cenc3 : c3s) - it says that the collection of Cipher3
ciphertexts gleaned by the intruder is c3s,

• (nonces : ns) - it says that the collection of nonces
gleaned by the intruder is ns,

• (prins : ps) - it says that the principals participating
in the protocol are ps,

• (rand : rs) - it says that the available random numbers
are rs. Every time a principal wants to send an Init
or a Resp message, it needs to generate a random and
globally unique number. To formalize that behavior, we
provide a fixed collection of random numbers from the
beginning, and every time a process needs to generate
a random number, an element is extracted and used.

Each state in SNSLPK is expressed as {obs}, where obs
is a soup of those observable components. We suppose that
two principals p & q together with an intruder participate
in the NSLPK protocol, one initial state of INSLPK namely
init is defined as follows:

{(nw: emp) (rand: (r1 r2)) (nonces: emp)
(cenc1: emp) (cenc2: emp) (cenc3: emp)
(prins: (p q intr))} .

where intr is a constant of Prin denoting the intruder,
and emp denotes an empty collection.

Three rewrite rules Challenge, Response, and
Confirmation formalize three actions when a principal
sends an Init, a Resp, and an Ack message, respectively. Let
OCs be a Maude variable of observable component soups;
P & Q be Maude variables of principals; Ps be a Maude
variable of collections of principals; NW, R, and N be Maude
variables denoting a network, a random number, and a nonce,
respectively; Rs, CE1, and Ns be Maude variables denoting
a collection of random numbers, Cipher1, and nonces,
respectively. The rewrite rule Challenge is defined as
follows:

rl [Challenge] : {(nw: NW) (prins: (P Q Ps))
(rand: (R Rs)) (cenc1: CE1) (nonces: Ns) OCs }
=> {(nw: (m1(P,P,Q,enc1(Q,n(P,Q,R),P)) NW))
(cenc1: (if Q == intr then CE1 else
(enc1(Q,n(P,Q,R),P) CE1) fi)) (nonces:
(if Q == intr then (n(P,Q,R) Ns) else Ns fi))
(rand: Rs) (prins: (P Q Ps)) OCs} .

The rewrite rule says that when R is in rand, a new Init
message is put into the network, intruder gleans the nonce
and the ciphertext used in that message if that message sends
to the intruder, and R is removed from rand.

In addition to the three rewrite rules that formalize sending
messages exactly following the protocol mentioned above,
we also introduce six more rewrite rules to formalize the
intruder’s faking messages:

• fake12, fake22, and fake32: a ciphertext C is
available to the intruder, the intruder fakes and sends an



Figure 1. A simple state picture for the NSLPK protocol (1)

Init, or a Resp, or an Ack message using C, respectively.
• fake11 and fake31: a nonce N is available to the

intruder, the intruder fakes and sends an Init or an Ack
message using N, respectively,

• fake21: two nonces N1 and N2 are available to the
intruder, the intruder fakes and sends a Resp message
using N1 and N2.

The rewrite rule fake11 is defined as follows:

rl [fake11] : {(nw: NW) (nonces: (N Ns))
(prins: (P Q Ps)) (cenc1: CE1) OCs} =>
{(nw: (m1(intr,P,Q,enc1(Q,N,P)) NW)) (cenc1:
(if Q == intr then CE1 else (enc1(Q,N,P) CE1)
fi)) (nonces: (N Ns)) (prins: (P Q Ps)) OCs} .

The rewrite rule says that when N is in nonces, a new
intruder’s faking Init message is put into the network, and
the intruder gleans the ciphertext sent in that message.

The remaining rewrite rules can be defined likewise.

III. STATE PICTURE DESIGN OF NSLPK PROTOCOL

The network component, which consists of many messages,
is the main part of the protocol that we should focus on.
Initially, we try to make a design for the network in which Bui
and Ogata [6] used, as shown in Fig. 1. The design, however,
is hard to observe and/or analyze the messages in the network
because there are many contents inside each message. As
shown in Fig. 1, there are three rectangles in which the first
rectangle represents a network that contains all messages, the
second one displays the most recent message that has been
put into the network, and the collection of nonces gleaned
by the intruder is displayed in the last rectangle. “...” is
displayed whenever the content of the network is overflowed.
During making a better state picture design, by observing
that the number of messages increases by one after each
state, we come up with an idea that displays the contents of
the most recent message that has been put into the network
(hereinafter, let us call such a message as the latest message).

Although there are three kinds of ciphertexts (i.e.,
enc1, enc2, and enc3), in the state picture design,
we use only one form to visualize ciphertexts. The
form is as follows: enci(public-key,nonce1,nonce2, cipher-
creator), where public-key is a principal (possibly intr),
nonce1 for m1, m2, and m3 is in the following form:
nonce1(generator, random, forwhom); nonce2 is in the fol-
lowing form: nonce2(generator, random, forwhom). When
the ciphertext is in the form of enc3, cipher-creator receives
a dummy principal dP as its value. Similarly, when the
ciphertext is in the form of enc1 or enc3, nonce2 receives
a dummy value denoted by nonce2(dP,dR,dP), where dR
denotes a dummy random number.

Fig. 2 depicts our state picture design. Some designs are
used from state picture design tips of the work [5]. Fig.
3 displays a state picture. We first divide two roles that
are creators and senders into two separate places. Then,
observable components are put to the corresponding place in
which their roles seem to belong. For example, public-key
should be put to the receiver’s side because the sender uses
the public-key of the receiver for encrypting. Values are
displayed with different colors and shapes. For example, pink
and light yellow colors represent two different principals,
blank represents intr, triangles represent the contents of
the nonce.

We describe the details of the state picture design. The
representation of the three types of messages designed in
Fig.2 is as follows:

The type of the lastest message is represented by a small
light gray square. For example, when the lastest message is
a message m2, there is only one light gray square displayed
under m2 as shown in the following picture:

The representations of the creator, sender, and receiver
of the message used in Fig. 2 are as follows:

The creator of the message appears at the top-left place, pink
and light yellow circles represent two different principals
q and p. If the value is intr, nothing is displayed. The
sender and receiver of the message appear at the bottom-
left and bottom-right places, respectively. For example, when
creator is intr, sender is p, receiver is q, it is displayed
as follows:



Figure 2. A state picture design for the NSLPK protocol (1)

Figure 3. A state picture for the NSLPK protocol (1)

The representations of the contents of the ciphertext shown
in Fig. 2 are as follows:

The cipher-creator of the ciphertext appears at the top-left
place of the rectangle, pink and light yellow squares represent
two principals q and p, respectively. If the value is intr,
nothing is displayed. For the case the message is a message
m3, the text “none” is displayed. The public-key of the
ciphertext appears at the top-right place. If the value is
intr, nothing is displayed. The two nonces of the ciphertext
are shown with two rectangles inside the primary rectangle,
where the upper rectangle visualizes the first nonce and the
lower rectangle visualizes the second nonce. In the first nonce,

the generator and forwhom representations appear at the
left-hand side and right-hand side, respectively; pink and
light yellow triangles are the principals q and p, respectively.
If the value is intr, nothing is displayed. The random
representation appears at the middle place in which the
random number value used is displayed. The second nonce is
represented likewise. If the message is a message m3, the text
dum is displayed for the values of generator and forwhom,
where dum denotes the dummy value dP. Considering the
following example. cipher-creator is p and public-key is
q. In the first nonce generator is p, random is r1, and
forwhom is intr. In the second nonce, generator is intr,
random is r2, and forwhom is p. Those values are displayed
as follows:

In Fig. 2, the representations of urand and nonces are
designed at the left-bottom corner. The values of both urand
and nonces are displayed using two rectangles as follows:



Figure 4. Some state pictures for the NSLPK protocol (1)

In Fig. 2, three types of network representations are
designed on the right side. “...” is displayed whenever the
messages are overflowed. This can be seen in the figure
below:

IV. CHARACTERISTICS GUESSED BASED ON OUR DESIGN

We sometimes need to concentrate on some specific OCs
when we observe the graphical animations. Most of the
characteristics of the NSLPK protocol are straightforward to

guess by observing graphical animations. However, some are
not, precisely the characteristics that include two messages.
We use Maude to generate a finite input sequence of states
based on the Maude specification of the protocol, then feed
it to SMGA which produces graphical animation of the input
sequence of states.

Fig. 4 shows four pictures of states for MNSLPK. Taking
a look at the first picture (of State 0) and the second picture
(of State 3) helps us recognize that there is n(intr,q,r1)
in nonces when generator is intr and taking a look
at the third picture (of State 30) and the fourth picture (of
State 46) helps us recognize that there is n(p,intr,r2)
in nonces when forwhom is intr. Any nonce gleaned
by the intruder is stored in nonces. Hence, observing the
graphical animation of these four pictures helps us guess the
characteristic such that any nonce gleaned by the intruder has
been generated by the intruder or a non-intruder principal
that wanted to authenticate the intruder.

Taking a look at the second picture (of State 3) and the third
picture (of State 30) allows us to guess another characteristic
such that whenever receiver is intr (that displays blank
in the state pictures) in the latest message, then the nonce of
that message is in nonces. Carefully observing graphical
animations helps us perceive one more characteristic. Taking
a look at the four pictures of Fig. 4, we recognize the
characteristic that when a nonce is in nonces, the random
number used in the nonce is stored in the collection of used
random numbers urand.

We prepare another input file that consists of a finite
sequence of states so that we can guess more characteristics
by observing the behavior of the protocol. To guess some
non-trivial characteristics, we concentrate on the order
in which messages have been sent. Carefully observing
the order of messages, especially that a message m2
should follow a message m1, as Fig. 5, we guess a
characteristics that involves two messages. Taking a look
at the first picture (of State 0), there exists a message
m1(p,p,q,enc1(q,n(p,q,r1),n(dP,dP,dR),p))
in nwM1. After some m1 messages are faked by the intruder
based on the gleaned information, there exists a message
m2(q,q,p,enc2(p,n(p,q,r1), n(q,p,r2),q))
in nwM2 at the second picture (of State 5). Taking a
look at the third picture (of State 19), we observe that
the intruder creates many faked m2 messages including
m2(intr,q,p,enc2(p,n(p,q,r1),n(q,p,r2),
q)). Observing the order of messages in the network allows
us to conjecture the following characteristic:

• if there exists a message m1 created by a non-intruder
principal and sent to another non-intruder principal, and

• there exists a message m2 (either created by the intruder
or a non-intruder principal) that is sent to the sender of
m1, then

• the message m2 originates from a non-intruder principal
who is the receiver of the m1.



Figure 5. Some state pictures for the NSLPK protocol (2)

Similarly, we expect that a message m3 should
follow a message m2. There is a message
m2(q,q,p,enc2(p,n(p,q,r1),n(q,p,r2),q))
in nwM2 at the second picture (of State 5). Taking a look at
the first picture (of State 40) in Fig. 6, there exists a message
m3(p,p,q,enc3(q,n(q,p,r2),n(dP,dP,dR),
dP)) in nwM3. At the second picture (of State
43), there exists a message m3(intr,p,q,
enc3(q,n(q,p,r2),n(dP,dP,dR),dP)) in nwM3
which is created by intr. Carefully observing the order of
the messages in the network, we also guess the following
characteristic:

• if there exists a message m2 created by a non-intruder

principal and sent to another non-intruder principal, and
• there exists a message m3 (either created by the intruder

or a non-intruder principal) that is sent to the sender of
the message m2, then

• the message m3 originates from the non-intruder prin-
cipal who is the receiver of the message m2.

Maude search command can be used as an invariant model
checker to check that the NSLPK protocol enjoys the guessed
characteristics. The guessed characteristics are confirmed by
the search command at a specific depth (depth 5) of the state
space because the reachable state space (generated by Maude)
of the protocol is too huge to be exhaustively traversed. The
search command does not find any counterexample at depth



Figure 6. Some state pictures for the NSLPK protocol (3)

5. It means that the NSLPK protocol seems to enjoy the
guessed characteristics.

V. CONCLUSION

We have graphically animated the NSLPK authentication
protocol with SMGA. Observing the graphical animations
based on our design allows us to guess some (non-trivial)
characteristics of the state machine formalizing the NSLPK
protocol. We have checked the characteristics by Maude
search command. Although some model checking exper-
iments were not completed because of the state space
explosion problem, some characteristics of NSLPK have
been proved [12], guaranteeing that the characteristics are
invariant properties of NSLPK. One piece of our future work
is to graphically animate state machines that formalize other
authentication protocols, such as TLS [13], with SMGA.
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