IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Special Section on Data Engineering and Information Management
Predicting Political Orientation of News Articles Based on User Behavior Analysis in Social Network
Jun-Gil KIMKyung-Soon LEE
Author information
JOURNAL FREE ACCESS

2014 Volume E97.D Issue 4 Pages 685-693

Details
Abstract

News articles usually represent a biased viewpoint on contentious issues, potentially causing social problems. To mitigate this media bias, we propose a novel framework for predicting orientation of a news article by analyzing social user behaviors in Twitter. Highly active users tend to have consistent behavior patterns in social network by retweeting behavior among users with the same viewpoints for contentious issues. The bias ratio of highly active users is measured to predict orientation of users. Then political orientation of a news article is predicted based on the bias ratio of users, mutual retweeting and opinion analysis of tweet documents. The analysis of user behavior shows that users with the value of 1 in bias ratio are 88.82%. It indicates that most of users have distinctive orientation. Our prediction method based on orientation of users achieved 88.6% performance in accuracy. Experimental results show significant improvements over the SVM classification. These results show that proposed detection method is effective in social network.

Content from these authors
© 2014 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top