skip to main content
research-article

TOD: GPU-Accelerated Outlier Detection via Tensor Operations

Published: 01 November 2022 Publication History

Abstract

Outlier detection (OD) is a key machine learning task for finding rare and deviant data samples, with many time-critical applications such as fraud detection and intrusion detection. In this work, we propose TOD, the first tensor-based system for efficient and scalable outlier detection on distributed multi-GPU machines. A key idea behind TOD is decomposing complex OD applications into a small collection of basic tensor algebra operators. This decomposition enables TOD to accelerate OD computations by leveraging recent advances in deep learning infrastructure in both hardware and software. Moreover, to deploy memory-intensive OD applications on modern GPUs with limited on-device memory, we introduce two key techniques. First, provable quantization speeds up OD computations and reduces its memory footprint by automatically performing specific floating-point operations in lower precision while provably guaranteeing no accuracy loss. Second, to exploit the aggregated compute resources and memory capacity of multiple GPUs, we introduce automatic batching, which decomposes OD computations into small batches for both sequential execution on a single GPU and parallel execution across multiple GPUs.
TOD supports a diverse set of OD algorithms. Evaluation on 11 real-world and 3 synthetic OD datasets shows that TOD is on average 10.9X faster than the leading CPU-based OD system PyOD (with a maximum speedup of 38.9X), and can handle much larger datasets than existing GPU-based OD systems. In addition, TOD allows easy integration of new OD operators, enabling fast prototyping of emerging and yet-to-discovered OD algorithms.

References

[1]
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2--4, 2016, Kimberly Keeton and Timothy Roscoe (Eds.). USENIX Association, 265--283. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
[2]
Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. 2021. Practical approach to asynchronous multivariate time series anomaly detection and localization. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. ACM, 2485--2494.
[3]
Elke Achtert, Hans-Peter Kriegel, Lisa Reichert, Erich Schubert, Remigius Wojdanowski, and Arthur Zimek. 2010. Visual Evaluation of Outlier Detection Models. In Database Systems for Advanced Applications, 15th International Conference, DASFAA 2010, Tsukuba, Japan, April 1--4, 2010, Proceedings, Part II (Lecture Notes in Computer Science), Hiroyuki Kitagawa, Yoshiharu Ishikawa, Qing Li, and Chiemi Watanabe (Eds.), Vol. 5982. Springer, 396--399.
[4]
Charu C. Aggarwal. 2013. Outlier Analysis. Springer.
[5]
Charu C Aggarwal, Yuchen Zhao, and S Yu Philip. 2011. Outlier detection in graph streams. In 2011 IEEE 27th international conference on data engineering. IEEE, IEEE, 399--409.
[6]
Malak Alshawabkeh, Byunghyun Jang, and David R. Kaeli. 2010. Accelerating the local outlier factor algorithm on a GPU for intrusion detection systems. In Proceedings of 3rd Workshop on General Purpose Processing on Graphics Processing Units, GPGPU 2010, Pittsburgh, Pennsylvania, USA, March 14, 2010 (ACM International Conference Proceeding Series), David R. Kaeli and Miriam Leeser (Eds.), Vol. 425. ACM, 104--110.
[7]
Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2016. Cache locality is not enough: High-performance nearest neighbor search with product quantization fast scan. In VLDB, Vol. 9. VLDB Endowment, 12.
[8]
Fabrizio Angiulli, Stefano Basta, Stefano Lodi, and Claudio Sartori. 2010. A Distributed Approach to Detect Outliers in Very Large Data Sets. In Euro-Par 2010 - Parallel Processing. Springer Berlin Heidelberg, Berlin, Heidelberg, 329--340.
[9]
Fabrizio Angiulli, Stefano Basta, Stefano Lodi, and Claudio Sartori. 2016. GPU Strategies for Distance-Based Outlier Detection. IEEE Trans. Parallel Distributed Syst. 27, 11 (2016), 3256--3268.
[10]
Fabrizio Angiulli and Clara Pizzuti. 2002. Fast Outlier Detection in High Dimensional Spaces. In Principles of Data Mining and Knowledge Discovery, 6th European Conference, PKDD 2002, Helsinki, Finland, August 19--23, 2002, Proceedings (Lecture Notes in Computer Science), Tapio Elomaa, Heikki Mannila, and Hannu Toivonen (Eds.), Vol. 2431. Springer, 15--26.
[11]
Fadhel Ayed, Lorenzo Stella, Tim Januschowski, and Jan Gasthaus. 2020. Anomaly detection at scale: The case for deep distributional time series models. In International Conference on Service-Oriented Computing. Springer, 97--109.
[12]
Fatemeh Azmandian, Ayse Yilmazer, Jennifer G. Dy, Javed A. Aslam, and David R. Kaeli. 2012. GPU-Accelerated Feature Selection for Outlier Detection Using the Local Kernel Density Ratio. In 12th IEEE International Conference on Data Mining, ICDM 2012, Brussels, Belgium, December 10--13, 2012, Mohammed Javeed Zaki, Arno Siebes, Jeffrey Xu Yu, Bart Goethals, Geoffrey I. Webb, and Xindong Wu (Eds.). IEEE Computer Society, 51--60.
[13]
Kanishka Bhaduri, Bryan L Matthews, and Chris R Giannella. 2011. Algorithms for speeding up distance-based outlier detection. In KDD. ACM, 859--867.
[14]
Davis W Blalock and John V Guttag. 2017. Bolt: Accelerated data mining with fast vector compression. In KDD. ACM, 727--735.
[15]
Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen, Alexandre V. Evfimievski, and Niketan Pansare. 2018. On Optimizing Operator Fusion Plans for Large-Scale Machine Learning in SystemML. Proc. VLDB Endow. 11, 12 (2018), 1755--1768.
[16]
Paul Boniol and Themis Palpanas. 2020. Series2graph: Graph-based subsequence anomaly detection for time series. VLDB 13, 12 (2020), 1821--1834.
[17]
Paul Boniol, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2020. GraphAn: Graph-based subsequence anomaly detection. VLDB 13, 12 (2020), 2941--2944.
[18]
Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J Franklin. 2021. SAND: streaming subsequence anomaly detection. VLDB 14, 10 (2021), 1717--1729.
[19]
Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. 2000. LOF: Identifying Density-Based Local Outliers. In SIGMOD. ACM, 93--104.
[20]
Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. 2013. API design for machine learning software: experiences from the scikit-learn project. In Proceedings of ECML PKDD Workshop: Languages for Data Mining and Machine Learning. ECML, 108--122.
[21]
Guilherme O Campos, Arthur Zimek, Jörg Sander, Ricardo JGB Campello, Barbora Micenková, Erich Schubert, Ira Assent, and Michael E Houle. 2016. On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data mining and knowledge discovery 30, 4 (2016), 891--927.
[22]
Lei Cao, Qingyang Wang, and Elke A Rundensteiner. 2014. Interactive outlier exploration in big data streams. VLDB 7, 13 (2014), 1621--1624.
[23]
Lei Cao, Yizhou Yan, Samuel Madden, Elke A Rundensteiner, and Mathan Gopalsamy. 2019. Efficient discovery of sequence outlier patterns. VLDB 12, 8 (2019), 920--932.
[24]
Steve Dai, Rangharajan Venkatesan, Haoxing Ren, Brian Zimmer, William J. Dally, and Brucek Khailany. 2021. VS-Quant: Per-vector Scaled Quantization for Accurate Low-Precision Neural Network Inference. CoRR (2021). arXiv:2102.04503
[25]
Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition. IEEE, 248--255.
[26]
Evelyn Fix and Joseph Lawson Hodges. 1989. Discriminatory analysis. Non-parametric discrimination: Consistency properties. International Statistical Review/Revue Internationale de Statistique 57, 3 (1989), 238--247.
[27]
Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast approximate nearest neighbor search with the navigating spreading-out graph. VLDB 12, 5 (2019), 461--474.
[28]
Tianfan Fu, Cao Xiao, Cheng Qian, Lucas M Glass, and Jimeng Sun. 2021. Probabilistic and Dynamic Molecule-Disease Interaction Modeling for Drug Discovery. In KDD. ACM, 404--414.
[29]
Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao Zhu, Haoxiang Lin, and Mao Yang. 2020. Estimating GPU memory consumption of deep learning models. In ESEC/FSE. ACM, 1342--1352.
[30]
Prasun Gera, Hyojong Kim, Piyush Sao, Hyesoon Kim, and David Bader. 2020. Traversing large graphs on GPUs with unified memory. VLDB 13, 7 (2020), 1119--1133.
[31]
Markus Goldstein and Andreas Dengel. 2012. Histogram-based outlier score (hbos): A fast unsupervised anomaly detection algorithm. KI (2012), 59--63.
[32]
Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT.
[33]
Songqiao Han, Xiyang Hu, Hailiang Huang, Mingqi Jiang, and Yue Zhao. 2022. ADBench: Anomaly Detection Benchmark. arXiv preprint arXiv:2206.09426 (2022).
[34]
Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. 2020. Array programming with NumPy. Nature (2020).
[35]
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, 770--778.
[36]
Vincent Jacob, Fei Song, Arnaud Stiegler, Bijan Rad, Yanlei Diao, and Nesime Tatbul. 2021. A demonstration of the exathlon benchmarking platform for explainable anomaly detection. VLDB (PVLDB) (2021).
[37]
Zhuoran Ji and Cho-Li Wang. 2021. Accelerating DBSCAN Algorithm with AI Chips for Large Datasets. In ICPP 2021: 50th International Conference on Parallel Processing, Lemont, IL, USA, August 9 - 12, 2021, Xian-He Sun, Sameer Shende, Laxmikant V. Kalé, and Yong Chen (Eds.). ACM, 51:1--51:11.
[38]
Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. 2020. Improving the Accuracy, Scalability, and Performance of Graph Neural Networks with Roc. In MLSys. mlsys.org.
[39]
Zhihao Jia, Matei Zaharia, and Alex Aiken. 2019. Beyond Data and Model Parallelism for Deep Neural Networks. In Proceedings of Machine Learning and Systems 2019, MLSys 2019, Stanford, CA, USA, March 31 - April 2, 2019, Ameet Talwalkar, Virginia Smith, and Matei Zaharia (Eds.). mlsys.org. https://proceedings.mlsys.org/book/265.pdf
[40]
William Kahan. 1996. IEEE standard 754 for binary floating-point arithmetic. Lecture Notes on the Status of IEEE 754, 94720-1776 (1996), 11.
[41]
Kyle Kingsbury and Peter Alvaro. 2020. Elle: inferring isolation anomalies from experimental observations. VLDB 14, 3 (2020), 268--280.
[42]
Dimitrios Koutsoukos, Supun Nakandala, Konstantinos Karanasos, Karla Saur, Gustavo Alonso, and Matteo Interlandi. 2021. Tensors: An abstraction for general data processing. VLDB 14, 10 (2021), 1797--1804.
[43]
Hans-Peter Kriegel, Matthias Schubert, and Arthur Zimek. 2008. Angle-based outlier detection in high-dimensional data. In KDD. ACM, 444--452.
[44]
Kwei-Herng Lai, Daochen Zha, Junjie Xu, Yue Zhao, Guanchu Wang, and Xia Hu. 2021. Revisiting Time Series Outlier Detection: Definitions and Benchmarks. In Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual. Joaquin Vanschoren and Sai-Kit Yeung. https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/ec5decca5ed3d6b8079e2e7e7bacc9f2-Abstract-round1.html
[45]
Aleksandar Lazarevic, Levent Ertöz, Vipin Kumar, Aysel Ozgur, and Jaideep Srivastava. 2003. A Comparative Study of Anomaly Detection Schemes in Network Intrusion Detection. In SDM. SIAM, 25--36.
[46]
Eleazar Leal and Le Gruenwald. 2018. Research Issues of Outlier Detection in Trajectory Streams Using GPUs. SIGKDD Explor. 20, 2 (2018), 13--20.
[47]
Yann LeCun. 2019. 1.1 deep learning hardware: past, present, and future. In 2019 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, 12--19.
[48]
Meng-Chieh Lee, Yue Zhao, Aluna Wang, Pierre Jinghong Liang, Leman Akoglu, Vincent S. Tseng, and Christos Faloutsos. 2020. AutoAudit: Mining Accounting and Time-Evolving Graphs. In Big Data. IEEE, 950--956.
[49]
Rubao Lee, Minghong Zhou, Chi Li, Shenggang Hu, Jianping Teng, Dongyang Li, and Xiaodong Zhang. 2021. The art of balance: a RateupDB experience of building a CPU/GPU hybrid database product. VLDB 14, 12 (2021), 2999--3013.
[50]
Wonyeol Lee, Rahul Sharma, and Alex Aiken. 2018. On automatically proving the correctness of math.h implementations. Proc. ACM Program. Lang. 2, POPL (2018), 47:1--47:32.
[51]
Aaron E Lefohn, Shubhabrata Sengupta, Joe Kniss, Robert Strzodka, and John D Owens. 2006. Glift: Generic, efficient, random-access GPU data structures. ACM Transactions on Graphics (TOG) 25, 1 (2006), 60--99.
[52]
Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu. 2020. COPOD: Copula-Based Outlier Detection. In ICDM. IEEE, 1118--1123.
[53]
Zheng Li, Yue Zhao, Xiyang Hu, Nicola Botta, Cezar Ionescu, and George Chen. 2022. ECOD: Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions. IEEE Transactions on Knowledge and Data Engineering (2022), 1--1.
[54]
Can Liu, Li Sun, Xiang Ao, Jinghua Feng, Qing He, and Hao Yang. 2021. Intention-aware heterogeneous graph attention networks for fraud transactions detection. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 3280--3288.
[55]
Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation Forest. In ICDM. IEEE Computer Society, 413--422.
[56]
Haoyu Liu, Fenglong Ma, Shibo He, Jiming Chen, and Jing Gao. 2021. Fairness-aware Outlier Ensemble. arXiv preprint arXiv:2103.09419 (2021).
[57]
Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang, Kaize Ding, Canyu Chen, Hao Peng, Kai Shu, et al. 2022. Benchmarking Node Outlier Detection on Graphs. arXiv preprint arXiv:2206.10071 (2022).
[58]
Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang, Kaize Ding, Canyu Chen, Hao Peng, Kai Shu, et al. 2022. PyGOD: A Python Library for Graph Outlier Detection. arXiv preprint arXiv:2204.12095 (2022).
[59]
Zhiwei Liu, Yingtong Dou, Philip S. Yu, Yutong Deng, and Hao Peng. 2020. Alleviating the Inconsistency Problem of Applying Graph Neural Network to Fraud Detection. In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, SIGIR 2020, Virtual Event, China, July 25--30, 2020, Jimmy Huang, Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu (Eds.). ACM, 1569--1572.
[60]
Moshe Looks, Marcello Herreshoff, DeLesley Hutchins, and Peter Norvig. 2017. Deep Learning with Dynamic Computation Graphs. In ICLR. OpenReview.net.
[61]
Elio Lozano and Edgar Acuña. 2005. Parallel Algorithms for Distance-Based and Density-Based Outliers. In ICDM. IEEE Computer Society, 729--732.
[62]
Emaad Manzoor, Hemank Lamba, and Leman Akoglu. 2018. xstream: Outlier detection in feature-evolving data streams. In KDD. ACM, 1963--1972.
[63]
Chen Meng, Minmin Sun, Jun Yang, Minghui Qiu, and Yang Gu. 2017. Training deeper models by GPU memory optimization on TensorFlow. In Proc. of ML Systems Workshop in NIPS. NIPS.
[64]
Prashanth Menon, Todd C Mowry, and Andrew Pavlo. 2017. Relaxed operator fusion for in-memory databases: Making compilation, vectorization, and prefetching work together at last. VLDB 11, 1 (2017), 1--13.
[65]
Seung Won Min, Vikram Sharma Mailthody, Zaid Qureshi, Jinjun Xiong, Eiman Ebrahimi, and Wen-mei Hwu. 2020. EMOGI: efficient memory-access for out-of-memory graph-traversal in GPUs. VLDB 14, 2 (2020), 114--127.
[66]
Seung Won Min, Kun Wu, Sitao Huang, Mert Hidayetoğlu, Jinjun Xiong, Eiman Ebrahimi, Deming Chen, and Wen Mei Hwu. 2021. Large graph convolutional network training with GPU-oriented data communication architecture. VLDB 14, 11 (2021), 2087--2100.
[67]
Supun Nakandala, Karla Saur, Gyeong-In Yu, Konstantinos Karanasos, Carlo Curino, Markus Weimer, and Matteo Interlandi. 2020. A Tensor Compiler for Unified Machine Learning Prediction Serving. In OSDI. OSDI, 899--917.
[68]
Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. 2019. PipeDream: Generalized Pipeline Parallelism for DNN Training. In Proceedings of the 27th ACM Symposium on Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP '19). Association for Computing Machinery, New York, NY, USA, 1--15.
[69]
Henry Neeb and Christopher Kurrus. 2016. Distributed k-nearest neighbors.
[70]
Graham Neubig, Yoav Goldberg, and Chris Dyer. 2017. On-the-fly Operation Batching in Dynamic Computation Graphs. In NeurIPS. 3971--3981.
[71]
Junki Oku, Keiichi Tamura, and Hajime Kitakami. 2014. Parallel processing for distance-based outlier detection on a multi-core CPU. In IEEE International Workshop on Computational Intelligence and Applications (IWCIA). IEEE, 65--70.
[72]
Gustavo H Orair, Carlos HC Teixeira, Wagner Meira Jr, Ye Wang, and Srinivasan Parthasarathy. 2010. Distance-based outlier detection: consolidation and renewed bearing. VLDB 3, 1--2 (2010), 1469--1480.
[73]
Matthew Eric Otey, Amol Ghoting, and Srinivasan Parthasarathy. 2006. Fast Distributed Outlier Detection in Mixed-Attribute Data Sets. Data Min. Knowl. Discov. 12, 2--3 (2006), 203--228.
[74]
Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. 2021. Deep learning for anomaly detection: A review. CSUR 54, 2 (2021), 1--38.
[75]
Spiros Papadimitriou, Hiroyuki Kitagawa, Phillip B. Gibbons, and Christos Faloutsos. 2003. LOCI: Fast Outlier Detection Using the Local Correlation Integral. In ICDE. IEEE Computer Society, 315--326.
[76]
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning library. NeuIPS 32 (2019), 8026--8037.
[77]
Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research 12 (2011), 2825--2830.
[78]
Tomás Pevný. 2016. Loda: Lightweight on-line detector of anomalies. Mach. Learn. 102, 2 (2016), 275--304.
[79]
Sebastian Raschka. 2015. Python machine learning. Packt publishing ltd.
[80]
Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu Kou, Tony Xing, Mao Yang, Jie Tong, and Qi Zhang. 2019. Time-series anomaly detection service at microsoft. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. ACM, 3009--3017.
[81]
Petar Ristoski, Christian Bizer, and Heiko Paulheim. 2015. Mining the Web of Linked Data with RapidMiner. J. Web Semant. 35 (2015), 142--151.
[82]
Lukas Ruff, Robert A. Vandermeulen, Nico Görnitz, Alexander Binder, Emmanuel Müller, Klaus-Robert Müller, and Marius Kloft. 2020. Deep Semi-Supervised Anomaly Detection. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26--30, 2020. OpenReview.net. https://openreview.net/forum?id=HkgH0TEYwH
[83]
Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alexander J. Smola, and Robert C. Williamson. 2001. Estimating the Support of a High-Dimensional Distribution. Neural Comput. 13, 7 (2001), 1443--1471.
[84]
Erich Schubert, Arthur Zimek, and Hans-Peter Kriegel. 2014. Generalized Outlier Detection with Flexible Kernel Density Estimates. In SDM. SIAM, 542--550.
[85]
Mei-Ling Shyu, Shu-Ching Chen, Kanoksri Sarinnapakorn, and LiWu Chang. 2003. A novel anomaly detection scheme based on principal component classifier. Technical Report.
[86]
Petru Sincraian. 2021. PyOD Download Statistics. https://pepy.tech/project/pyod. Accessed: 2021-09-09.
[87]
Martin Svedin, Steven Wei Der Chien, Gibson Chikafa, Niclas Jansson, and Artur Podobas. 2021. Benchmarking the Nvidia GPU Lineage: From Early K80 to Modern A100 with Asynchronous Memory Transfers. In HEART '21. ACM, 9:1--9:6.
[88]
Nguyen Thanh Tam, Matthias Weidlich, Bolong Zheng, Hongzhi Yin, Nguyen Quoc Viet Hung, and Bela Stantic. 2019. From anomaly detection to rumour detection using data streams of social platforms. VLDB 12, 9 (2019), 1016--1029.
[89]
Jian Tang, Zhixiang Chen, Ada Wai-Chee Fu, and David Wai-Lok Cheung. 2002. Enhancing Effectiveness of Outlier Detections for Low Density Patterns. In PAKDD (Lecture Notes in Computer Science), Vol. 2336. Springer, 535--548.
[90]
Theodoros Toliopoulos, Christos Bellas, Anastasios Gounaris, and Apostolos Papadopoulos. 2020. PROUD: PaRallel OUtlier Detection for Streams. In Proceedings of the 2020 International Conference on Management of Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14--19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 2717--2720.
[91]
Luan Tran, Min Y Mun, and Cyrus Shahabi. 2020. Real-time distance-based outlier detection in data streams. VLDB 14, 2 (2020), 141--153.
[92]
Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos Efrain Quintero Narvaez, Vinay Ramakrishnaiah, Nirmal Prajapati, Pat McCormick, Jamaludin Mohd-Yusof, Xi Luo, Dheevatsa Mudigere, Jongsoo Park, Misha Smelyanskiy, and Alex Aiken. 2022. Unity: Accelerating DNN Training Through Joint Optimization of Algebraic Transformations and Parallelization. In 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22). USENIX Association, Carlsbad, CA, 267--284. https://www.usenix.org/conference/osdi22/presentation/unger
[93]
Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma, Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong, Yuanyong Chen, and Zhihao Jia. 2021. PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections. In OSDI. OSDI, 37--54.
[94]
Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A Comprehensive Survey and Experimental Comparison of Graph-Based Approximate Nearest Neighbor Search. Proc. VLDB Endow. 14, 11 (2021), 1964--1978.
[95]
Runhui Wang and Dong Deng. 2020. DeltaPQ: lossless product quantization code compression for high dimensional similarity search. VLDB 13, 13 (2020), 3603--3616.
[96]
Shuang Wang and Hakan Ferhatosmanoglu. 2020. PPQ-trajectory: spatio-temporal quantization for querying in large trajectory repositories. VLDB 14, 2 (2020), 215--227.
[97]
Yizhou Yan, Lei Cao, Caitlin Kulhman, and Elke Rundensteiner. 2017. Distributed local outlier detection in big data. In KDD. ACM, 1225--1234.
[98]
Susik Yoon, Jae-Gil Lee, and Byung Suk Lee. 2019. NETS: extremely fast outlier detection from a data stream via set-based processing. VLDB 12, 11 (2019), 1303--1315.
[99]
Rose Yu, Huida Qiu, Zhen Wen, ChingYung Lin, and Yan Liu. 2016. A survey on social media anomaly detection. SIGKDD Explorations 18 (2016), 1--14.
[100]
Aoqian Zhang, Shaoxu Song, Jianmin Wang, and Philip S Yu. 2017. Time series data cleaning: From anomaly detection to anomaly repairing. VLDB 10, 10 (2017), 1046--1057.
[101]
Sean Zhang, Varun Ursekar, and Leman Akoglu. 2022. Sparx: Distributed Outlier Detection at Scale. arXiv preprint arXiv:2206.01281 (2022).
[102]
Yue Zhao. 2021. PyOD Citation Statistics. https://scholar.google.ca/scholar?cites=3726241381117726876&as_sdt=5,39&sciodt=0,39&hl=en. Accessed: 2021-09-09.
[103]
Yue Zhao, Xiyang Hu, Cheng Cheng, Cong Wang, Changlin Wan, Wen Wang, Jianing Yang, Haoping Bai, Zheng Li, Cao Xiao, Yunlong Wang, Zhi Qiao, Jimeng Sun, and Leman Akoglu. 2021. SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier Detection. In Proceedings of Machine Learning and Systems 2021, MLSys 2021, virtual, April 5--9, 2021, Alex Smola, Alex Dimakis, and Ion Stoica (Eds.). mlsys.org. https://proceedings.mlsys.org/paper/2021/hash/98dce83da57b0395e163467c9dae521b-Abstract.html
[104]
Yue Zhao, Zain Nasrullah, Maciej K. Hryniewicki, and Zheng Li. 2019. LSCP: Locally Selective Combination in Parallel Outlier Ensembles. In Proceedings of the 2019 SIAM International Conference on Data Mining, SDM 2019, Calgary, Alberta, Canada, May 2--4, 2019, Tanya Y. Berger-Wolf and Nitesh V. Chawla (Eds.). SIAM, 585--593.
[105]
Yue Zhao, Zain Nasrullah, and Zheng Li. 2019. PyOD: A Python Toolbox for Scalable Outlier Detection. JMLR 20 (2019), 96:1--96:7.
[106]
Qiwei Zhong, Yang Liu, Xiang Ao, Binbin Hu, Jinghua Feng, Jiayu Tang, and Qing He. 2020. Financial defaulter detection on online credit payment via multi-view attributed heterogeneous information network. In WWW. ACM, 785--795.

Cited By

View all
  • (2024)Towards reproducible, automated, and scalable anomaly detectionProceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v38i20.30303(22687-22687)Online publication date: 20-Feb-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Proceedings of the VLDB Endowment
Proceedings of the VLDB Endowment  Volume 16, Issue 3
November 2022
181 pages
ISSN:2150-8097
Issue’s Table of Contents

Publisher

VLDB Endowment

Publication History

Published: 01 November 2022
Published in PVLDB Volume 16, Issue 3

Badges

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)26
  • Downloads (Last 6 weeks)4
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Towards reproducible, automated, and scalable anomaly detectionProceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v38i20.30303(22687-22687)Online publication date: 20-Feb-2024

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media