skip to main content
research-article

SkyGraph: retrieving regions of interest using skyline subgraph queries

Published: 01 August 2017 Publication History

Abstract

Several services today are annotated with points of interest (PoIs) such as "coffee shop", "park", etc. A region of interest (RoI) is a neighborhood that contains PoIs relevant to the user. In this paper, we study the scenario where a user wants to identify the best RoI in a city. The user expresses relevance through a set of keywords denoting PoIs. Ideally, the RoI should be small enough in size such that the user can conveniently explore the PoIs. On the other hand, it should be as relevant as possible. How does one balance the importance of size versus relevance? To a user exploring the RoI on foot, size is more critical. However, for a user equipped with a vehicle, relevance is a more important factor. In this paper, we solve this dilemma through skyline subgraph queries on keyword-embedded road networks. Skyline subgraphs subsume the choice of optimization function for an RoI since the optimal RoI for any rational user is necessarily a part of the skyline set. Our analysis reveals that the problem of computing the skyline set is NP-hard. We overcome the computational bottleneck by proposing a polynomial-time approximation algorithm called SkyGraph. To further expedite the running time, we develop an index structure, Partner Index, that drastically prunes the search space and provides up to 3 orders of magnitude speed-up on real road networks over the baseline approach. The datasets and executables are available at http://www.cse.iitd.ac.in/~sayan/software.html.

References

[1]
B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. Improved approximation guarantees for minimum-weight k-trees and prize-collecting salesmen. In STOC, pages 277--283, 1995.
[2]
X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k prestige-based relevant spatial web objects. PVLDB, 3(1--2):373--384, 2010.
[3]
X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial keyword querying. In SIGMOD, pages 373--384. ACM, 2011.
[4]
X. Cao, G. Cong, C. S. Jensen, and M. L. Yiu. Retrieving regions of interest for user exploration. PVLDB, 7(9):733--744, 2014.
[5]
A. Cary, O. Wolfson, and N. Rishe. Efficient and scalable method for processing top-k spatial boolean queries. In SSDBM, pages 87--95. Springer, 2010.
[6]
H.-J. Cho and C.-W. Chung. An efficient and scalable approach to cnn queries in a road network. In PVLDB, pages 865--876. VLDB Endowment, 2005.
[7]
H.-J. Cho, S. J. Kwon, and T.-S. Chung. Alps: an efficient algorithm for top-k spatial preference search in road networks. Knowledge and Information Systems, 42(3):599--631, 2015.
[8]
G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most relevant spatial web objects. PVLDB, 2(1):337--348, 2009.
[9]
I. De Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial databases. In ICDE, pages 656--665. IEEE, 2008.
[10]
N. Garg. A 3-approximation for the minimum tree spanning k vertices. In focs, volume 96, pages 302--309, 1996.
[11]
T. Guo, X. Cao, and G. Cong. Efficient algorithms for answering the m-closest keywords query. In SIGMOD, pages 405--418. ACM, 2015.
[12]
R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing spatial-keyword (sk) queries in geographic information retrieval (gir) systems. In SSDBM, pages 16--16. IEEE, 2007.
[13]
H. Hu, D. L. Lee, and V. Lee. Distance indexing on road networks. In PVLDB, pages 894--905. VLDB Endowment, 2006.
[14]
H. Hu, D. L. Lee, and J. Xu. Fast nearest neighbor search on road networks. In EDBT, pages 186--203. Springer, 2006.
[15]
M. Jiang, A. W.-C. Fu, R. C.-W. Wong, and Y. Xu. Hop doubling label indexing for point-to-point distance querying on scale-free networks. PVLDB, 7(12):1203--1214, 2014.
[16]
M. Kolahdouzan and C. Shahabi. Voronoi-based k nearest neighbor search for spatial network databases. In VLDB, pages 840--851, 2004.
[17]
K. C. Lee, W.-C. Lee, and B. Zheng. Fast object search on road networks. In EDBT, pages 1018--1029. ACM, 2009.
[18]
K. C. Lee, W.-C. Lee, B. Zheng, and Y. Tian. Road: A new spatial object search framework for road networks. TKDE, 24(3):547--560, 2012.
[19]
B. Liao, M. L. Yiu, Z. Gong, et al. Beyond millisecond latency nn search on commodity machine. TKDE, 27(10):2618--2631, 2015.
[20]
C. Long, R. C.-W. Wong, K. Wang, and A. W.-C. Fu. Collective spatial keyword queries: a distance owner-driven approach. In SIGMOD, pages 689--700. ACM, 2013.
[21]
D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in spatial network databases. In PVLDB, pages 802--813. VLDB Endowment, 2003.
[22]
J. B. Rocha-Junior and K. Nørvåg. Top-k spatial keyword queries on road networks. In EDBT, pages 168--179. ACM, 2012.
[23]
H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network distance browsing in spatial databases. In SIGMOD, pages 43--54. ACM, 2008.
[24]
S. Srivastava, S. Pande, and S. Ranu. Geo-social clustering of places from check-in data. In ICDM, pages 985--990, 2015.
[25]
D. Zhang, Y. M. Chee, A. Mondal, A. K. Tung, and M. Kitsuregawa. Keyword search in spatial databases: Towards searching by document. In ICDE, pages 688--699. IEEE, 2009.
[26]
D. Zhang, B. C. Ooi, and A. K. Tung. Locating mapped resources in web 2.0. In ICDE, pages 521--532. IEEE, 2010.
[27]
B. Zheng, K. Zheng, X. Xiao, H. Su, H. Yin, X. Zhou, and G. Li. Keyword-aware continuous knn query on road networks. In ICDE, pages 871--882. IEEE, 2016.
[28]
K. Zheng, H. Su, B. Zheng, S. Shang, J. Xu, J. Liu, and X. Zhou. Interactive top-k spatial keyword queries. In ICDE, pages 423--434. IEEE, 2015.
[29]
R. Zhong, G. Li, K.-L. Tan, and L. Zhou. G-tree: An efficient index for knn search on road networks. In CIKM, pages 39--48. ACM, 2013.

Cited By

View all
  1. SkyGraph: retrieving regions of interest using skyline subgraph queries

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Proceedings of the VLDB Endowment
      Proceedings of the VLDB Endowment  Volume 10, Issue 11
      August 2017
      432 pages
      ISSN:2150-8097
      Issue’s Table of Contents

      Publisher

      VLDB Endowment

      Publication History

      Published: 01 August 2017
      Published in PVLDB Volume 10, Issue 11

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)6
      • Downloads (Last 6 weeks)2
      Reflects downloads up to 06 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      Get Access

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media