Kybernetika 53 no. 2, 370-381, 2017

Cone-type constrained relative controllability of semilinear fractional systems with delays

Beata Sikora and Jerzy KlamkaDOI: 10.14736/kyb-2017-2-0370

Abstract:

The paper presents fractional-order semilinear, continuous, finite-dimensional dynamical systems with multiple delays both in controls and nonlinear function $f$. The constrained relative controllability of the presented semilinear system and corresponding linear one are discussed. New criteria of constrained relative controllability for the fractional semilinear systems with delays under assumptions put on the control values are established and proved. The conical type constraints are considered. The results are illustrated by an example.

Keywords:

constraints, the Caputo derivative, semilinear fractional systems, relative controllability, delays in control

Classification:

93B05, 93C05, 93C10, 34G20

References:

  1. E. Ahmed, A. H. Hashis and F. A. Rihan: On fractional order cancer model. J. Fractional Calculus Appl. 3 (2012), 1-6.   CrossRef
  2. A. Babiarz and M. Niezabitowski: Controllability Problem of Fractional Neutral Systems: A Survey. Math. Problems Engrg., ID 4715861 (2017), 15 pages.   DOI:10.1155/2017/4715861
  3. K. Balachandran, J. Kokila and J. J. Trujillo: Relative controllability of fractional dynamical systems with multiple delays in control. Comp. Math. Apll. 64 (2012), 3037-3045.   DOI:10.1016/j.camwa.2012.01.071
  4. K. Balachandran, Y. Zhou and J. Kokila: Relative controllability of fractional dynamical systems with delays in control. Commun. Nonlinear. Sci. Numer. Simulat. 17 (2012), 3508-3520.   DOI:10.1016/j.cnsns.2011.12.018
  5. K. Balachandran, Y. Zhou and J. Kokila: Relative controllability of fractional dynamical systems with discributed delays in control. Comp. Math. Apll. 64 (2012), 3201-3206.   DOI:10.1016/j.camwa.2011.11.061
  6. K. Balachandran: Controllability of Nonlinear Fractional Delay Dynamical Systems with Multiple Delays in Control Lecture Notes in Electrical Engineering. Theory and Applications of Non-integer Order Systems 407 (2016), 321-332.   DOI:10.1007/978-3-319-45474-0_29
  7. M. Bodnar and J. Piotrowska: Delay differential equations: theory and applications. Matematyka Stosowana 11 (2011), 17-56 (in Polish).   CrossRef
  8. M. A. Haque: A predator-prey model with discrete time delay considering different growth function of prey. Adv. Apll. Math. Biosciences 2 (2011), 1-16.   DOI:10.1016/j.mbs.2011.07.003
  9. X. He: Stability and delays in a predator-prey system. J. Math. Anal. Appl. 198 (1996), 355-370.   DOI:10.1006/jmaa.1996.0087
  10. T. Kaczorek: Selected Problems of Fractional Systems Theory. Lect. Notes Control Inform. Sci. 411 2011.   CrossRef
  11. T. Kaczorek and K. Rogowski: Fractional Linear Systems and Electrical Circuits. Studies in Systems, Decision and Control 13 2015.   DOI:10.1007/978-3-319-11361-6
  12. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204 2006.   CrossRef
  13. J. Klamka: Controllability of Dynamical Systems. Kluwer Academic Publishers, 1991.   CrossRef
  14. J. Klamka: Constrained controllability of semilinear systems with delayed controls. Bull. Polish Academy of Sciences: Technical Sciences 56 (2008), 333-337.   CrossRef
  15. J. Klamka and B. Sikora: New controllability Criteria for Fractional Systems with Varying Delays. Lect. Notes Electr. Engrg. Theory and Applications of Non-integer Order Systems 407 (2017), 333-344.   DOI:10.1007/978-3-319-45474-0_30
  16. K. Krishnaveni, K. Kannan and S. R. Balachandar: Approximate analytical solution for fractional population growth model. Int. J. Engrg. Technol. 5 (2013), 2832-2836.   CrossRef
  17. J. T. Machado, A. C. Costa and M. D. Quelhas: Fractional dynamics in DNA. Comm. Nonlinear Sciences and Numerical Simulation 16 (2011), 2963-2969.   DOI:10.1016/j.cnsns.2010.11.007
  18. A. B. Malinowska, T. Odziejewicz and E. Schmeidel: On the existence of optimal control for the fractional continuous-time Cucker-Smale model. Lect. Notes Electr. Engrg., Theory and Applications of Non-integer Order Systems 407 (2016), 227-240.   DOI:10.1007/978-3-319-45474-0_21
  19. K. S. Miller and B. Ross: An Introduction to the Fractional Calculus and Fractional Differential Calculus. Villey 1993.   CrossRef
  20. A. Monje, Y. Chen, B. M. Viagre, D. Xue and V. Feliu: Fractional-order Systems and Controls. Fundamentals and Applications. Springer-Verlag 2010.   DOI:10.1007/978-1-84996-335-0
  21. R. J. Nirmala, K. Balachandran, L. Rodriguez-Germa and J. J. Trujillo: Controllability of nonlinear fractional delay dynamical systems. Rep. Math. Physics 77 (2016), 87-104.   DOI:10.1016/s0034-4877(16)30007-6
  22. K. B. Oldham and J. Spanier: The Fractional Calculus. Academic Press 1974.   CrossRef
  23. I. Podlubny: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. In: Mathematics in Science and Engineering, Academic Press 1999.   DOI:10.1016/s0034-4877(16)30007-6
  24. S. M. Robinson: Stability theory for systems of inequalities. Part II. Differentiable nonlinear systems. SIAM J. Numerical Analysis 13 (1976), 497-513.   DOI:10.1137/0713043
  25. J. Sabatier, O. P. Agrawal and J. A. Tenreiro Machado: Advances in Fractional Calculus. In: Theoretical Developments and Applications in Physics and Engineering, Springer-Verlag 2007.   DOI:10.1007/978-1-4020-6042-7
  26. S. G. Samko, A. A. Kilbas and O. I. Marichev: Fractional Integrals and Derivatives: Theory and Applications. Gordan and Breach Science Publishers 1993.   CrossRef
  27. B. Sikora: Controllability of time-delay fractional systems with and without constraints. IET Control Theory Appl. 10 (2016), 320-327.   DOI:10.1049/iet-cta.2015.0935
  28. B. Sikora: Controllability criteria for time-delay fractional systems with a retarded state. Int. J. Applied Math. Computer Sci. 26 (2016), 521-531.   DOI:10.1515/amcs-2016-0036
  29. V. K. Srivastava, S. Kumar, M. Awasthi and B. K. Singh: Two-dimensional time fractional-order biological population model and its analytical solution. Egyptian J. Basic Appl. Sci. 1 (2014), 71-76.   DOI:10.1016/j.ejbas.2014.03.001
  30. J. Wei: The controllability of fractional control systems with control delay. Comput. Math. Appl. 64 (2012), 3153-3159.   DOI:10.1016/j.camwa.2012.02.065
  31. B. Zduniak, M. Bodnar and U. Foryś: A modified Van der Pol equation with delay in a description of the heart action. Int. J. Appl. Math. Computer Sci. 24 (2014), 853-863.   DOI:10.2478/amcs-2014-0063
  32. H. Zhang, J. Cao and W. Jiang: Controllability criteria for linear fractional differential systems with state delay and impulses. J. Appl. Math., ID146010 (2013) 9 pages.   DOI:10.1155/2013/146010