Kybernetika 51 no. 1, 59-80, 2015

Robust observer-based control of switched nonlinear systems with quantized and sample output

Carlos Perez and Manuel MeraDOI: 10.14736/kyb-2015-1-0059

Abstract:

This paper deals with the robust stabilization of a class of nonlinear switched systems with non-vanishing bounded perturbations. The nonlinearities in the systems satisfy a quasi-Lipschitz condition. An observer-based linear-type switching controller with quantized and sampled output signal is considered. Using a dwell-time approach and an extended version of the invariant ellipsoid method (IEM) sufficient conditions for stability in a practical sense are derived. These conditions are represented as Bilinear Matrix Inequalities (BMI's). Finally, two examples are given to verify the efficiency of the proposed method.

Keywords:

quantization, switched systems, robust stabilization

Classification:

93D21, 93C57

References:

  1. K. Aihara and H. Suzuki: Theory of hybrid dynamical systems and its applications to biological and medical systems. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 368 (2010), 4893-4914.   DOI:10.1098/rsta.2010.0237
  2. V. Azhmyakov: On the geometric aspects of the invariant ellipsoid method: Application to the robust control design. In: Proc. 50th IEEE Conference on Decision and Control and demonstratedntrol Conference, Orlando 2011, pp. 1353-1358.   DOI:10.1109/cdc.2011.6161180
  3. A. Balluchi, L. Benvenuti, M. D. Di Benedetto and A. Sangiovanni-Vincentelli: The design of dynamical observers for hybrid systems: Theory and application to an automotive control problem. Automatica 49 (2013), 915-925.   DOI:10.1016/j.automatica.2013.01.037
  4. M. Barkhordari Yazdi and M. R. Jahed-Motlagh: Stabilization of a CSTR with two arbitrarily switching modes using modal state feedback linearization. Chemical Engrg. J. 155 (2009), 838-843.   DOI:10.1016/j.cej.2009.09.008
  5. F. Blanchini and S. Miani: Set-Theoretic Methods in Control. Birkhauser, Boston 2008.   DOI:10.1007/978-0-8176-4606-6_9
  6. M. Branicky: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Automat. Control 57 (1998), 3038-3050.   DOI:10.1109/tac.2012.2199169
  7. M. C. F. Donkers, W. P. M. H. Hemmels, N. Van den Wouw and L. Hetel: Stability analysis of networked control systems using a switched linear systems approach. IEEE Trans. Automat. Control 56 (2011), 9, 2101-2115.   DOI:10.1109/tac.2011.2107631
  8. A. F. Filipov: Differential Equations with Discontinuous Right-hand Side. Kluwer, Dordrecht 1988.   CrossRef
  9. E. Fridman: Descriptor discretized Lyapunov functional method: Analysis and design. IEEE Trans. Automat. Control 51 (2006), 890-897.   DOI:10.1109/tac.2006.872828
  10. E. Fridman and S. I. Niculescu: On complete Lyapunov-Krasovskii functional techniques for uncertain systems with fast-varying delays. Int. J. Robust Nonlinear Control 18 (2008), 3, 364-374.   DOI:10.1002/rnc.1230
  11. E. Fridman and M. Dambrine: Control under quantization, saturation and delay: An LMI approach. Automatica 45 (2009), 10, 2258-2264.   DOI:10.1016/j.automatica.2009.05.020
  12. M. Fu and L. Xie: The sector bound approach to quantized feedback control. IEEE Trans. Automat. Control 50 (2005), 11, 1698-1711.   DOI:10.1109/tac.2005.858689
  13. H. Gao and T. Chen: A new approach to quantized feedback control systems. Automatica 44 (2008), 2, 534-542.   DOI:10.1016/j.automatica.2007.06.015
  14. J. C. Geromel and P. Colaneri: Stability and stabilization of continuous-time switched linear systems. SIAM J. Control Optim. 45 (2006), 5, 1915-1930.   DOI:10.1137/050646366
  15. J. D. Glover and F. C. Schweppe: Control of linear dynamic systems with set constrained disturbance. IEEE Trans. Automat. Control 16 (1971), 5, 411-423.   DOI:10.1109/tac.1971.1099781
  16. S. Gonzalez-Garcia, A. Polyakov and A. Poznyak: Linear feedback spacecraft stabilization using the method of invariant ellipsoids. In: Proc. 41st Southeastern Symposium on System Theory 2009, pp. 195-198.   DOI:10.1109/ssst.2009.4806834
  17. S. Gonzalez-Garcia, A. Polyakov. and A. Poznyak: Output linear controller for a class of nonlinear systems using the invariant ellipsoid technique. In: American Control Conference, St. Louis 2009, pp. 1160-1165.   DOI:10.1109/acc.2009.5160434
  18. P. Hartman: Ordinary Differential Equations. Second edition. Society for Industrial and Applied Mathematics, Philadelphia 2002.   DOI:10.1137/1.9780898719222
  19. J. P. Hespanha and A. S. Morse: Stability of switched systems with average dwell-time. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 2655-2660.   DOI:10.1109/cdc.1999.831330
  20. A. Kruszewski, W. J. Jiang, E. Fridman, J. P. Richard and A. Toguyeni: A switched system approach to exponential stabilization through communication network. IEEE Trans. Control Systems Technol. 20 (2012), 887-900.   DOI:10.1109/tcst.2011.2159793
  21. A. B. Khurzhanski and P. Varaiya: Ellipsoidal techniques for reachability under state constraints. SIAM J. Control Optim. 45 (2006), 1369-1394.   DOI:10.1137/s0363012903437605
  22. J. Li, Y. Liu, R. Mei and B. Li: Robust H$_\infty$ output feedback control of discrete time switched systems via a new linear matrix inequality formulation. In: Proc. 8th World Congress on Intelligent Control and Automation 2010, pp. 3377-3382.   DOI:10.1109/wcica.2010.5553817
  23. D. Liberzon: Switching in systems and control. In: Systems \& Control. Foundations \& Applications, Birkhauser, Boston 2003.   DOI:10.1007/978-1-4612-0017-8
  24. D. Liberzon: Stabilizing a switched linear system by sampled-data quantized feedback. In: Proc. 50th IEEE Conference on Decision and Control and European Control Conference, Orlando 2011, pp. 8321-8328.   DOI:10.1109/cdc.2011.6160212
  25. D. Liberzon: Finite data-rate feedback stabilization of switched and hybrid linear systems. Automatica 50 (2014), 2, 409-420.   DOI:10.1016/j.automatica.2013.11.037
  26. H. Lin and P. J. Antsaklis: Stability and stabilizability of switched linear systems: A survey of recent results. IEEE Trans. Automat. Control 54 (2009), 308-322.   DOI:10.1109/tac.2008.2012009
  27. Y. Liu, Y. Niu and D. Ho: Sliding mode control for linear uncertain switched systems. In: Proc. 31st Chinese Control Conference, Hefei 2012, pp. 3177-3181.   CrossRef
  28. T. Liu, Z. P. Jiang and D. J. Hill: Small-gain based output-feedback controller design for a class of nonlinear systems with actuator dynamic quantization. IEEE Trans. Automat. Control 57 (2012),5, 1326-1332.   DOI:10.1109/tac.2012.2191870
  29. T. Liu, Z. P. Jiang and D. J. Hill: A sector bound approach to feedback control of nonlinear systems with state quantization. Automatica 48 (2012), 1, 145-152.   DOI:10.1016/j.automatica.2011.09.041
  30. N. B. Lozada-Castillo, H. Alazki and A. S. Poznyak: Robust control design through the attractive ellipsoid technique for a class of linear stochastic models with multiplicative and additive noises. IMA J. Math. Control Inform. 30 (2013), 1-19.   DOI:10.1093/imamci/dns008
  31. G. N. Nair, F. Fagnani, S. Zampieri and R. J. Evans: Feedback control under data rate constraints: an overview. Proc. of the IEEE 95 (2007), 108-137.   DOI:10.1109/jproc.2006.887294
  32. H. Nie, Z. Song, P. Li and J. Zhao: Robust H$_\infty$ dynamic output feedback control for uncertain discrete-time switched systems with time-varying delays. In: Proc. 2008 Chinese Control and Decision Conference, Yantai-Shandong 2008, pp. 4381-4386.   DOI:10.1109/ccdc.2008.4598158
  33. P. Ordaz, H. Alazki and A. Poznyak: A sample-time adjusted feedback for robust bounded output stabilization. Kybernetika 49 (2013), 6, 911-934.   CrossRef
  34. C. Peng and Y. C. Tian: Networked H$_\infty$ control of linear systems with state quantization. Inform. Sci. 177 (2007), 5763-5774.   DOI:10.1016/j.ins.2007.05.025
  35. B. T. Polyak, S. A. Nazin, C. Durieu and E. Walter: Ellipsoidal parameter or state estimation under model uncertainty. Automatica 40 (2004), 1171-1179.   DOI:10.1016/j.automatica.2004.02.014
  36. B. T. Polyak and M. V. Topunov: Suppression of bounded exogenous disturbances: Output feedback. Autom. Remote Control 69 (2008), 801-818.   DOI:10.1134/s000511790805007x
  37. A. S. Poznyak: Advanced Mathematical Tools for Automatic Control Engineers: Deterministic Techniques. Elsevier, Amsterdam 2008.   DOI:10.1134/s0005117909110174
  38. A. S. Poznyak, V. Azhmyakov and M. Mera: Practical output feedback stabilization for a class of continuous-time dynamic system under sample-data outputs. Int. J. Control 84 (2011), 1408-1416.   DOI:10.1080/00207179.2011.603097
  39. R. Shorten, F. Wirth, O. Manson, K. Wulff and C. King: Stability criteria for switched and hybrid systems. SIAM Rev. 49 (2007), 545-592.   DOI:10.1137/05063516x
  40. Z. Sun and S. S. Ge: Stability Theory of Switched Dynamical Systems, Communications and Control Engineering. Springer-Verlag, London 2011.   DOI:10.1007/978-0-85729-256-8
  41. S. Tatikonda and S. Mitter: Control under communication constraints. IEEE Trans. Automat. Control 49 (2004), 1056-1068.   DOI:10.1109/tac.2004.831187
  42. Y. Wang, V. Gupta and P. Antsaklis: On passivity of a class of discrete-time switched nonlinear systems. IEEE Trans. Automat. Control 59 (2014), 692-702.   DOI:10.1109/tac.2013.2287074
  43. L. Yanyan, Z. Jun and G. Dimirovski: Passivity, feedback equivalence and stability of switched nonlinear systems using multiple storage functions. In: Proc. 30th Chinese Control Conference, Yantai 2011, pp. 1805-1809.   CrossRef
  44. W. A. Zhang and L. Yu: Output feedback stabilization of networked control systems with packet dropouts. IEEE Trans. Automat. Control 52 (2007), 1705-1710.   DOI:10.1109/tac.2007.904284