Kybernetika 50 no. 2, 284-295, 2014

Discriminating between causal structures in Bayesian Networks given partial observations

Philipp Moritz, Jörg Reichardt and Nihat AyDOI: 10.14736/kyb-2014-2-0284

Abstract:

Given a fixed dependency graph $G$ that describes a Bayesian network of binary variables $X_1, \dots, X_n$, our main result is a tight bound on the mutual information $I_c(Y_1, \dots, Y_k) = \sum_{j=1}^k H(Y_j)/c - H(Y_1, \dots, Y_k)$ of an observed subset $Y_1, \dots, Y_k$ of the variables $X_1, \dots, X_n$. Our bound depends on certain quantities that can be computed from the connective structure of the nodes in $G$. Thus it allows to discriminate between different dependency graphs for a probability distribution, as we show from numerical experiments.

Keywords:

Bayesian networks, causal Markov condition, information theory, information inequalities, common ancestors, causal inference

Classification:

60A08, 62B09

References:

  1. E. S. Allman and J. A. Rhodes: Reconstructing Evolution: New Mathematical and Computational Advances, chapter Phylogenetic invariants. Oxford University Press, 2007.   CrossRef
  2. N. Ay: A refinement of the common cause principle. Discrete Appl. Math. 157 (2009), 10, 2439-2457.   CrossRef
  3. B. Bollob{á}s: Random Graphs. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2001.   CrossRef
  4. T. M. Cover and J. A. Thomas: Elements of Information Theory. Second edition. Wiley, 2006.   CrossRef
  5. N. Friedman: Inferring cellular networks using probabilistic graphical models. Science 303 (2004), 5659, 799-805.   CrossRef
  6. J. Peters, J. Mooij, D. Janzing and B. Schölkopf: Causal discovery with continuous additive noise models. arXiv 1309.6779 (2013).   CrossRef
  7. S. L. Lauritzen: Graphical Models. Oxford Science Publications, Clarendon Press, 1996.   CrossRef
  8. S. L. Lauritzen and N. A. Sheehan: Graphical models for genetic analyses. Statist. Sci. 18 (2003), 489-514.   CrossRef
  9. J. Pearl: Causality: Models, Reasoning and Inference. Cambridge University Press, 2000.   CrossRef
  10. H. Reichenbach and M. Reichenbach: The Direction of Time. California Library Reprint Series, University of California Press, 1956.   CrossRef
  11. J. E. S. Socolar and S. A. Kauffman: Scaling in ordered and critical random boolean networks. Phys. Rev. Lett. 90 (2003), 068702.   CrossRef
  12. B. Steudel and N. Ay: Information-theoretic inference of common ancestors. CoRR, abs/1010.5720, 2010.   CrossRef
  13. M. Studen{ý}: Probabilistic Conditional Independence Structures. Information Science and Statistics. Springer, 2005.   CrossRef