
Mitochondrial network structure controls cell-to-cell
mtDNA variability generated by cell divisions – S1

Appendix

1 Models of mtDNA copy number variance

We consider four state variables describing the mtDNA population of a daughter cell after a
mother divides: Wn,Wc,Mn,Mc, for the wildtype (W ) and mutant (M) mtDNAs contained
in a reticulated mitochondrial network (n) or in fragmented mitochondrial elements in the
cytoplasm (c). An additional variable U describes the proportion of network mass inherited by
the daughter cell.

The mother cell has N0 mtDNAs, a proportion h of which are mutants (h is heteroplasmy).
Proportions p and q of the wildtype and mutant mtDNAs are contained in the network; the
remainder are in fragments in the cytoplasm. We consider a daughter inheriting a proportion
pc of the cytoplasm. The mtDNA copy number of the daughter, N = Wn+Wc+Mn+Mc, is the
sum of all components. We write W = Wn +Wc and M = Mn +Mc. Under the null hypothesis
of no network, since M ∼ Bin(hN0, pc) and W ∼ Bin((1− h)N0, pc), we have N ∼ Bin(N0, pc)
and

V (N) = V (W ) + V (M) + 2Cov(W,M)

= V (W ) + V (M)

= (1− h)N0pc(1− pc) + hN0pc(1− pc)
= pc(1− pc)N0

(1)

For the random mtDNA distribution model, using the full model (Eq 9 in the main text), and
decomposing into the networked and individual mitochondria, i.e., N = Nc + Nn, the law of
total variance gives

V (N) = V (Nc) + V (Nn)

= V (Nc) + E(V (Nn|U)) + V (E(Nn|U))

= pc(1− pc)(1− κ)N0 + E(U((1− U)κN0) + V (κN0U)

= pc(1− pc)N0 + E(U)(1− E(U))κN0 + κN0(κN0 − 1)V (U)

(2)

Overall, this expression captures copy number variance dynamics across a wide range of pa-
rameterisations (S5 Fig). For the repulsive mtDNA distribution model (Eq 8 in the main text)
the corresponding expressions are

V (N) = V (W ) + V (M) + 2Cov(W,M)

=

(
(1− κ)− 2h(1− h)

pqN0

κN0 − 1

)
N0pc(1− pc)

+

(
κ2 − 2h(1− h)

pq

κN0 − 1

)
N2

0V (U)

(3)
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where κ = p(1 − h) + qh. The expression correctly predicts sub-binomial variance for hetero-
geneous networks, but fails to capture the structure of genetic bias as well as other qualitative
dynamics of the system (S6 Fig).

2 Heteroplasmy level variance

The heteroplasmy level is the mutant proportion of the cell, i.e.,

h =
M

W +M
(4)

where W and M are the numbers of wild-type and mutant type mtDNA, respectively. By
definition,

V (h) = E
(
(h− E(h))2

)
(5)

and h = h(M,W ). As the ratio of random variables, h does not admit as straightforward an
analysis as N . Using a sum over all states of the system (Eq 10 in the main text) we can
compute its value (and V (N)) for a given system. While these expressions provide a good
match with simulations for a wide range of parameterisations (see Fig 3), they do not allow
intuitive understanding of the system. Since we sought a more intuitive analysis, we employ
first- and second-order Taylor expansions to generate more tractable estimations focussing on
key governing parameters.

2.1 Taylor expansions for heteroplasmy level variance

Using a first-order Taylor expansion (as in, for example, Ref. [1]), we obtain

V (h) ' E((h′W (W − µW ) + h′M(M − µM))2)

= E((h′2W (W − µW )2 + h′2M(M − µM)2 + 2h′Wh
′
M(W − µW )(M − µM))2)

= h′2WV (W ) + h′2MV (M) + 2h′Mh
′
WCov(M,W )

where prefactors h′M and h′W are the partial derivatives of h(M,W ) evaluated at the means of
the distribution for M and W , µM = hN0 and µW = (1− h)N0. In general, we find

h′W (W,M) =
−M

(W +M)2
and h′M(W,M) =

1

W +M
− M

(W +M)2
=

W

W +M
(6)

or

h′W (µW , µM) =
−µM

µ2
and h′M(µW , µM) =

µW

µ2
(7)

This approximation is used to derive the variance of the heteroplasmy level in all the scenarios
considered, so we give it an subscript of 1 to show it is a first-order Taylor expansion.

V1(h) ≈ h′2MV (M) + h′2WV (W ) + 2h′Wh
′
MCov(M,W ) (8)

The evaluation of the prefactors are model-specific: Under the null hypothesis, where both W
and M are binomially distributed with probability pc and their respective proportion of the
population N , µM = pchN0, µW = pc(1 − h)N0 and µ = µM + µW , these expressions evaluate
to

h′W = − pchN0

(pcN0)2
= − h

pcN0

(9)

h′M =
pc(1− h)N0

(pcN0)2
=

1− h
pcN0

. (10)
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For the network model, whether it is with or without mutual repulsion of mtDNA molecules,
we write µW = µWn + µWc = E(U)wn + pcwc and µM = µMn + µMc = E(U)mn + pcmc, so
µ = µW + µM = E(U)(wn +mn) + pc(wc +mc) and

h′W = − mnE(U) +mcpc
(E(U)(wn +mn) + pc(wc +mc))2

(11)

h′M =
wnE(U) + wcpc

(E(U)(wn +mn) + pc(wc +mc))2
(12)

Note that under the assumption that the network is evenly distributed throughout the cell, i.e.,
E(U) = pc, we recapitulate the expressions for the null hypothesis pre-factors.

Null model (no network structure)

Under the null hypothesis, independent binomial distributions describe both M and W . Com-
bining Eqs 9, 10) with the variances of each specie, we find

V1(h) =

(
1

pcN0

)2

(h2V (W ) + (1− h)2V (M)− 2h(1− h)Cov(W,M)

=

(
1

pcN0

)2

(h2(1− h)pc(1− pc)N0 + h(1− h)2pc(1− pc)N0)

=

(
h(1− h)

pcN0

)
((h(1− pc) + (1− h)(1− pc))

=

(
h(1− h)

pcN0

)
(1− pc)

which, weighted by h(1 − h), gives Eq 6 in the main text, i.e., the normalized heteroplasmy
variance defined as

V ′(h) =
V1(h)

h(1− h)
=

1− pc
pc

1

N0

(13)

Network model without repulsion

We next consider the influence of network structure on mtDNA distributions. All random
variables are binomially distributed with their respective proportion of the total mtDNA content
of the parent as the population, with pc or u as the probability for cytoplasmic and networked
mtDNAs respectively. Using the law of total variance for M and W , we find that

V (M) = E(V (Mn|U)) + V (E(Mn|U)) + V (Mc)

= E(mnU(1− U)) + V (mnU) + V (Mc)

= mn(E(U)− (V (U) + E(U)2)) +m2
nV (U) + (1− q)hNpc(1− pc)

= mnE(U)(1− E(U)) +mcpc(1− pc) +mn(mn − 1)V (U)

(14)

and

V (W ) = E(V (Wn|U)) + V (E(Wn|U)) + V (Wc)

= E(wnU(1− U)) + V (wnU) + V (Wc)

= wn(E(U)− (V (U) + E(U)2)) + w2
nV (U) + wcpc(1− pc)

= wnE(U)(1− E(U)) + wcpc(1− pc) + wn(wn − 1)V (U)

(15)
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Using the law of total covariance, since cytoplasmic copy numbers are uncorrelated, we find
that the covariance of M with W is

Cov(M,W ) = Cov(Mn,Wn)

= E(Cov(Mn,Wn|U)) + Cov(E(Mn|U), E(Wn|U))

= E(E(MnWn|U))− E(E(Mn|U))E(E(Wn|U))

= wnmn(E(U2)− E(U)2)

= wnmnV (U)

(16)

Combining (co)variances with the prefactors of Eqs (12,11), Eq (8) gives

V1(h) =

(
mnE(U) +mcpc

(E(U)(wn +mn) + pc(wc +mc))2

)2

×

(wnE(U)(1− E(U)) + wcpc(1− pc) + wn(wn − 1)V (U))

+

(
wnE(U) + wcpc

(E(U)(wn +mn) + pc(wc +mc))2

)2

×

(mnE(U)(1− E(U)) +mcpc(1− pc) +mn(mn − 1)V (U))

− 2

(
mnE(U) +mcpc

(E(U)(wn +mn) + pc(wc +mc))2

)
×(

wnE(U) + wcpc
(E(U)(wn +mn) + pc(wc +mc))2

)
wnmnV (U)

(17)

If we assume that E(U) = pc, for which wn + wc = (1 − h)N0 and mn + mc = hN0, we get a
simpler expression,

V1(h) =

(
h

pcN0

)2

((1− h)N0pc(1− pc) + wn(wn − 1)V (U))

+

(
(1− h)

pcN0

)2

(hN0pc(1− pc) +mn(mn − 1)V (U))

− 2

(
h

pcN0

)(
(1− h)

pcN0

)
wnmnV (U)

(18)

Simplifying and gathering terms, we find that

V1(h) =

(
h(1− h)

p2cN0

)
pc(1− pc)

+

(
V (u)

p2cN0

)
h2(1− h)2(p− q)

+

(
V (U)

pcN0

)
h(1− h)(ph+ q(1− h))

(19)

Dividing by h(1− h) gives V ′1(h),

V ′1(h) =
1− pc
pcN0

+
h(1− h)

p2c
(p− q)2V (U)− V (U)

p2cN0

(ph+ q(1− h)) (20)

which we plot for different values of p, q, pc, and network parameters, E(U) and V (U) taken
from simulation. The latter two are used to fit a beta distribution with parameters α and β,
with which we model the process of network segregation when a cell divides.
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Looking to gain insights from Eq 20, we write p = q − δ. In this case, supposing that δ
is small, wild-type and mutant mtDNA are treated almost equally by the network, with an
almost equal proportion of the two admitted into the network.

V ′1(h) =
1− pc
pcN0

+
h(1− h)

p2c
δ2V (U)− V (U)

p2cN0

(p+ δ(1− h)) (21)

It will be seen that there is a quadratic dependence on δ, the difference in inclusion probabilities
for the different types of mtDNA. For δ 6= 0, the network is genetically biased towards one of the
types, to which there is associated an increase in V ′(h). For δ = 0, the network is genetically
unbiased, giving

V ′1(h) =
1− pc
pcN0

− V (U)

p2cN0

p (22)

When pc = 1/2, i.e., when cell division is symmetric, we arrive at Eq 12 in the main text. Eq 22
suggests that the network structure provides a negative contribution to V ′(h), resulting in the
low diagonal values in the first order Taylor expansion of V ′(h), whereas, from the simulations,
we expected a small increase along the diagonal (shown in Fig 2). The second order Taylor
expansion corrects this (S4 Fig), with contributions of third order and higher in p and q (Eq
31), but it overcompensates; we do not pursue higher order terms, mostly because they are
hard to interpret, and present significant difficulties in calculations. We then asked whether
statistical simulations would produce a better fit, and we find that there is good support for
this model when mtDNA molecules are randomly distributed throughout the network in our
simulations.

Network model with repulsion

Next we considered networks in which mtDNA molecules within the network were mutually
repulsed by each other, setting a minimum distance between mtDNA molecules in the network.
We again decompose W and M into their cytoplasmic and network components, i.e.,

W = Wn +Wc

M = Mn +Mc

To assess the effect of mutual self-repulsion of mtDNA, we assumed a model of mtDNA trans-
mission from a parent to its smaller daughter in which we consider the network to be divided
into bu/lc different compartments. Into each of these compartments a single mtDNA molecule
will be placed – hence l acts to enforce a minimum inter-mtDNA distance due to the repulsion
of mtDNA molecules. We then fill these places by sampling, without replacement, mtDNA
molecules from the set contained in the network. This corresponds to a hypergeometric model
of bu/lc samples from a population of wn +mn mtDNAs, wn of which are wild-type,

Wn ∼ Hypergeometric(wn +mn, wn, bu/lc)
Wc ∼ Bin (wc, pc)

Mn ∼ bu/lc −Wn

Mc ∼ Bin (mc, pc)

(23)

where u ∼ beta(α, β). The problem with this model is that, to keep the values of Wn and Mn

consistent, we must assume that there are exactly wn + mn spaces in the network; hence l =
(wn +mn)−1. In our physical simulations, l is instead set to a distance (l = 0.01) that enforces
some separation between mtDNAs while making it possible to populate the network through
random positions in reasonable time. There are therefore more ‘spaces’ in the simulation than
captured by the model, meaning that an even physical spread is less enforced in the simulation
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than in the model, and the range of variance values supported will be more limited in the
simulation.

Accepting this limitation, the variance of Wn is derived using the law of total variance,
giving

V (Wn) = E(V (Wn|U)) + V (E(Wn|U))

=E

(
bU/lc wn

wn +mn

wn +mn − wn

wn +mn

wn +mn − bU/lc
wn +mn − 1

)
+ V

(
bU/lc wn

wn +mn

)
=

wnmn

l2(wn +mn)2
1

wn +mn − 1
{(wn +mn)lE(U)− E(U2)}

+
w2

n

l2(wn +mn)2
V (U)

And using the l = (wn +mn)−1 assumption,

V (Wn) = w2
nV (U) +

wnmn

wn +mn − 1
(E(U)− E(U2)) (24)

For V (Mn) we find

V (Mn) =
1

l2
V (U) + V (Wn)− 2Cov(bU/lc,Wn)

Using the law of total covariance,

Cov(bU/lc,Wn) =
1

l
(E(Cov(U,Wn|U)) + Cov(E(U |U), E(Wn|U)))

=
wn

l(wn +mn)

(
0 +

1

l
Cov(U,U)

)
Setting l = (wn +mn)−1, we find

V (Mn) = (wn +mn)2V (U) + V (Wn)− 2(wn +mn)wnV (U) (25)

Combining with the variances of the cytoplasmic mtDNA content, we find that

V (M) = m2
nV (U) +

wnmn

wn +mn − 1
(E(U)− E(U2)) + pc(1− pc)mc (26)

V (W ) = w2
nV (U) +

wnmn

wn +mn − 1
(E(U)− E(U2)) + pc(1− pc)wc. (27)

As before, Wn has non-zero covariance with Mn, due to their mutual dependence on network
structure, but no cytoplasmic component covaries with any other component. The overall
mutant-wildtype covariance is therefore

Cov(M,W ) = Cov(Mn,Wn)

= E(MnWn|U)− E(Mn|U)E(Wn|U)

= wnmnE(U2)− wnmnE(U)2

= wnmnV (U)
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In this case, V1(h), the first-order Taylor expansion of heteroplasmy variance is

V1(h) =

(
mnE(U) +mcpc

(E(U)(wn +mn) + pc(wc +mc))2

)2

×(
w2

nV (U) +
wnmn

wn +mn − 1
(E(U)− E(U2)) + pc(1− pc)wc

)
+

(
wnE(U) + wcpc

(E(U)(wn +mn) + pc(wc +mc))2

)2

×

(m2
nV (U) +

wnmn

wn +mn − 1
(E(U)− E(U2)) + pc(1− pc)mc)

− 2

(
mnE(U) +mcpc

(E(U)(wn +mn) + pc(wc +mc))2

)
×(

wnE(U) + wcpc
(E(U)(wn +mn) + pc(wc +mc))2

)
wnmnV (U)

(28)

Assuming E(u) = pc, we find that

V1(h) =

(
h

pcN0

)2(
w2

nV (U) +
wnmn

wn +mn − 1
(E(U)− E(U2)) + pc(1− pc)wc

)
+

(
(1− h)

pcN0

)2

(m2
nV (U) +

wnmn

wn +mn − 1
(E(U)− E(U2)) + pc(1− pc)mc)

− 2

(
h

pcN0

)(
(1− h)

pcN0

)
wnmnV (U)

(29)

Gathering some terms and dividing by h(1− h), we find

V ′1(h) =
V (U)

p2c

(
h(1− h)(p− q)2 − pq

κN0 − 1
((1− h)2 + h2)

)
+

1− pc
pcN0

(h(1− p) + (1− h)(1− q))

+
1− pc
pc

pq

κN0 − 1

(
(1− h)2 + h2

) (30)

where κ = p(1 − h) + qh. As before, we plot V ′1(h) for different values of p, q, pc, and given
network parameters E(U) and V (U), used to fit a beta distribution with parameters α and β,
with which we model the process of mtDNA distribution when a cell divides. S2 Fig shows the
result of plotting V ′1(h) for networked distributions with mutually repulsive mtDNA molecules.
Despite imperfections (S6 Fig), it will be seen that the the model captures qualitative behaviour
of the simulations.

2.2 Higher-order moments and second-order Taylor expansion

Given some observed shortcomings in the ability of the first-order Taylor expansion to capture
heteroplasmy variance, we asked whether the next-order terms in the Taylor expansion could
refine the estimates. The second-order Taylor expansion of heteroplasmy level variance used
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for the nonuniform distribution mtDNAs can be expressed as V1(h) + V2(h):

V2(h) = h′Mh
′′
MMµ3(M) + h′Wh

′′
WWµ3(W )

+ (2h′Wh
′′
MW + h′Mh

′′
WW )Cov(M,W 2) + (2h′Mh

′′
MW + h′Wh

′′
MM)Cov(M2,W )

+
1

4
h′′2MMµ4(M) +

1

4
h′′2WWµ4(W )

+ (h′′2MW +
1

2
h′′MMh

′′
WW )Cov(M2,W 2)

+ h′′MWh
′′
WWCov(M,W 3) + h′′MWh

′′
MMCov(M3,W )

(31)

where V1(h) is given by Eq 12 in the main text, and the derivatives are given by

h′W = − mnE(U) +mcpc
(E(U)(wn +mn) + pc(wc +mc))2

h′M =
wnE(U) + wcpc

(E(U)(wn +mn) + pc(wc +mc))2

h′′MM = −2W/N3 = − 2(wnE(U) + wcpc)

((wn +mn)E(U) + (wc +mc)pc)3

h′′WW =
2(mnE(U) +mcpc)

((wn +mn)E(U) + (wc +mc)pc)3

h′′MW = (M −W )/N3 =
(mn − wn)E(U) + (mc − wc)pc

((wn +mn)E(U) + (wc +mc)pc)3

2.2.1 Higher-order moments from binomial and beta-binomial distributions

Expanding the Taylor expansion to second-order, we need a number of higher-order moments
of the distributions of W and M . We start by calculating the third and fourth central moments
of W and M . For the third order moments, we write

µ3(W ) = E(((Wn − µWn) + (Wc − µWc))
3)

= E((Wn − µWn)3 + 3(Wn − µWn)2(Wc − µWc)

+ 3(Wn − µWn)(Wc − µWc)
2 + (Wc − µWc)

3)

= µ3(Wn) + µ3(Wc) + 3Cov(W 2
n ,Wc) + 3Cov(Wn,W

2
c )

= µ3(Wn) + µ3(Wc),

(32)

where the final line follows because networked and cytoplasmic mtDNA counts are uncorrelated.
As Wn is beta-binomial, we can take established expressions for the moments of the beta-
binomial distribution; for Wc we use established expressions for the binomial distribution [2]:

µ3(Wn) =
wnα(β − α)β(2w2

n + 3wn(α + β) + (α + β)2

(α + β)3(1 + α + β)(2 + α + β)
(33)

µ3(Wc) = wc(pc − 3p2c + 2p3c) (34)

The fourth central moment of Wn is taken from the beta-binomial distribution:

µ4(Wn) =
αβwn(A+B + C +D)

(α + β)4(α + β + 1)(α + β + 2)(α + β + 3)
(35)

where
A = (α + β)3

(
α2 − α(4β + 1) + (β − 1)β

)
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B = 3w3
n

(
α2(β + 2) + α(β − 2)β + 2β2

)
C = 6w2

n

(
α3(β + 2) + 2α2β2 + αβ3 + 2β3

)
and

D = wn(α + β)2(α2(3β + 7) + α(3β2 − 10β − 1) + β(7β − 1)

The fourth central moment of Wc is from the binomial distribution:

µ4(Wc) = wcpc(1− pc)(1 + (3wc − 6)pc(1− pc)). (36)

For M we find the same expression, but with different prefactors

µ3(Mn) =
mnα(β − α)β(2m2

n + 3mn(α + β) + (α + β)2

(α + β)3(1 + α + β)(2 + α + β)
(37)

µ3(Mc) = mc(pc − 3p2c + 2p3c) (38)

For terms in M we follow the same approach of recruiting central moment results from
the beta-binomial and binomial distributions. The same expression structures arise, but with
different prefactors reflecting the mutant population:

µ3(Mn) =
mnα(β − α)β(2m2

n + 3mn(α + β) + (α + β)2

(α + β)3(1 + α + β)(2 + α + β)
(39)

µ3(Mc) = mc(pc − 3p2c + 2p3c) (40)

and

µ4(Mn) =
αβmn(A+B + C +D)

(α + β)4(α + β + 1)(α + β + 2)(α + β + 3)
(41)

where
A = (α + β)3

(
α2 − α(4β + 1) + (β − 1)β

)
B = 3m3

n

(
α2(β + 2) + α(β − 2)β + 2β2

)
C = 6m2

n

(
α3(β + 2) + 2α2β2 + αβ3 + 2β3

)
and

D = mn(α + β)2(α2(3β + 7) + α(3β2 − 10β − 1) + β(7β − 1)

The fourth central moment of Mc is

µ4(Mc) = mcpc(1− pc)(1 + (3mc − 6)pc(1− pc)) (42)

2.2.2 Covariance calculations

To calculate the covariances, we use the law of total covariance, which for RVs X, Y and Z
states that

Cov(X, Y ) = E(Cov(X, Y |Z)) + Cov(E(X|Z), E(Y |Z))

Using the identity Cov(X, Y ) = E(XY )− E(X)E(Y ), we find we retain the terms

Cov(X, Y ) = E(E(XY |Z))− E(E(X|Z))E(E(Y |Z))
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In this case, when u is fixed, the variables W and M are independent RVs, so the first term is
the E(E(X|Z)E(Y |Z)). Using these findings, the necessary covariances of higher order in the
RVs M and W are

Cov(W 2,M) = Cov(W 2
n ,Mn) + 2E(Wc)Cov(WnWc,Mn)

= E(E(W 2
n |U)E(Mn|U))

− E(E(W 2
n |U))E(E(Mn|U))

+ 2E(Wc)Cov(Wn,Mn)

= E((wnmnU
2 + wnmn(wn − 1)U3)− E(wnU + wn(wn − 1)U2)E(mnU)

+ 2pcwcwnmnV (U)

= wnmn

(
V (U) + (wn − 1)(E(U3)− E(U)E(U2)

)
+ 2pcwcwnmnV (U)

(43)

Note that we have used that E(W 2
n |U) = V (Wn|U) + E(Wn|U)2 = wnU + wn(wn − 1)U2. To

calculate the covariance of W 2 with M2, we also need E(M2
n|U) = mnU +mn(mn − 1)U2

Cov(W 2,M2) = Cov(W 2
n ,M

2
n) + 2Cov(W 2

n ,MnMc)

+ 2Cov(WnWc,M
2
n) + 4Cov(WnWc,MnMc)

= wnmnE((U + (wn − 1)U2)(U + (mn − 1)U2))

− wnmnE(U + (wn − 1)U2)E(U + (mn − 1)U2)

= wnmn(E(U2) + (wn +mn − 2)E(U3) + (wn − 1)(mn − 1)E(U4))

− wnmn(E(U)2 + (wn +mn − 2)E(U)E(U2)

+ (wn − 1)(mn − 1)E(U2)2)

+ 2pcwcwnmn

(
V (U) + (mn − 1)(E(U3)− E(U)E(U2))

)
+ 2pcmcwnmn

(
V (U) + (wn − 1)(E(U3)− E(U)E(U2))

)
+ 4p2cwcmcwnmnV (U)

= wnmn(V (U) + (wn +mn − 2)(E(U3)− E(U)E(U2))

+ (wn − 1)(mn − 1)(E(U4)− E(U2)2))

+ 2pcwcwnmn

(
V (U) + (mn − 1)(E(U3)− E(U)E(U2))

)
+ 2pcmcwnmn

(
V (U) + (wn − 1)(E(U3)− E(U)E(U2))

)
+ 4p2cwcmcwnmnV (U)

(44)

Cov(W 3,M) = Cov(W 3
n ,Mn) + 3Cov(W 2

nWc,Mn) + 3Cov(WnW
2
c ,Mn)

= E(E(W 3
n |U)E(Mn|U))− E(E(W 3

n |U))E(E(Mn|U))

+ 3E(Wc)Cov(W 2
n ,Mn) + 3E(W 2

c )Cov(Wn,Mn)

= E(µ′3(Wn|U)E(Mn|U))− E(µ′3(Wn|U))E(E(Mn|U))

+ 3E(Wc)Cov(W 2
n ,Mn) + 3E(W 2

c )Cov(Wn,Mn)

= wnmn(E(U2) + 3(wn − 1)E(U3) + (w2
n − 3wn + 2)E(U4))

− wnmn(E(U)2 + 3(wn − 1)E(U)E(U2)

+ (w2
n − 3wn + 2)E(U)E(U3))

+ 3pcwcwnmn

(
V (U) + (wn − 1)(E(U3)− E(U)E(U2)

)
+ 3(wcpc(1− pc) + w2

cp
2
c)wnmnV (U)

= wnmn(V (U) + 3(wn − 1)
(
E(U3)− E(U)E(U2)

)
+ (w2

n − 3wn + 2)
(
E(U4)− E(U)E(U3)

)
)

+ 3pcwcwnmn

(
V (U) + (wn − 1)(E(U3)− E(U)E(U2)

)
+ 3(wcpc(1− pc) + w2

cp
2
c)wnmnV (U)

(45)
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Here we have used E(W 2
c ) = V (Wc) + E(Wc)

2 = wcpc(1 − pc) + w2
cp

2
c and, since the third

non-central moment µ′3(Wn|U) expressed in terms of the third central moment µ3(Wn|U) is
µ3(Wn|U) + 3µE(W 2

n |U) + E(Wn|U)3, where µ3(Wn|U) = wn(U − 3U2 + 2U3), we find that

µ′3(Wn) = wn((w2
n − 3wn + 2)E(U3) + 3(wn − 1)E(U2) + E(U))

Lastly, Cov(W,M2) and by the symmetry of the problem

Cov(W,M2) = wnmn

(
V (U) + (mn − 1)(E(U3)− E(U)E(U2)

)
+ 2pcmcwnmnV (U) (46)

Cov(W,M3) = wnmn(V (U) + 3(mn − 1)
(
E(U3) + E(U)E(U2)

)
+ (m2

n − 3mn + 2)
(
E(U4)− E(U)E(U3)

)
)

+ 3pcmcwnmn

(
V (U) + (mn − 1)(E(U3)− E(U)E(U2)

)
+ 3(mcpc(1− pc) +m2

cp
2
c)wnmnV (U)

(47)

In S5 Fig and S6 Fig, we plot these expressions for the various moments and covariances in
the system compared to those arising from our simulation model. We generally observe good
agreement between theory and simulation (most departures are on a very small scale compared
to the overall scale of the corresponding expression; arising due to small deviations from the
beta-distribution model for network mass). However, the overall second-order Taylor expression
still deviates substantially from observed heteroplasmy variance (S4 Fig). One aspect of the
first-order model is improved – the increase on the p = q diagonal. But the off-diagonal
behaviour is substantially compromised, suggesting an overcompensation to the errors in the
previous order. We conclude that higher-still terms in the expansion will be required to more
perfectly capture the behaviour, and that convergence to the true behaviour may be rather
slow.

2.2.3 Comparison of individual statistics

Here, we present the comparisons of simulation results with model results in both models to all
relevant orders. First, one should note that the second order result only applies to the models
with random mtDNA placement in the network, and then only for the heteroplasmy variance.
This is because h is a ratio of random variables, and which is differentiable an arbitrary number
of times with respect to both variables, W and M ; the copy number variance, however, is linear
in these random variables, and so the approximation is the same for all orders starting at first.
S4 Fig shows comparisons of simulation results (top row) with first and second order results
(middle and bottom rows), respectively. Here we see clearly that both first and second order
approximations were needed to capture the behavior displayed in our simulations, but that
neither provides a reasonable match: the first order approximation departs significantly along
the diagonal, displaying a small decrease as opposed to a small increase; the second order
approximation massively overestimates, causing a far too large an increase along the diagonal.
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Gottfried Brem, Jo Poulton, and Nick S Jones. Stochastic modelling, bayesian inference,
and new in vivo measurements elucidate the debated mtdna bottleneck mechanism. Elife,
4:e07464, 2015.

[2] Andreas Knoblauch. Closed-form expressions for the moments of the binomial probability
distribution. SIAM Journal on Applied Mathematics, 69(1):197–204, 2008.

11


	Models of mtDNA copy number variance
	Heteroplasmy level variance
	Taylor expansions for heteroplasmy level variance
	Higher-order moments and second-order Taylor expansion
	Higher-order moments from binomial and beta-binomial distributions
	Covariance calculations
	Comparison of individual statistics



