Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Closed-form solution of absolute orientation using unit quaternions

Not Accessible

Your library or personal account may give you access

Abstract

Finding the relationship between two coordinate systems using pairs of measurements of the coordinates of a number of points in both systems is a classic photogrammetric task. It finds applications in stereophotogrammetry and in robotics. I present here a closed-form solution to the least-squares problem for three or more points. Currently various empirical, graphical, and numerical iterative methods are in use. Derivation of the solution is simplified by use of unit quaternions to represent rotation. I emphasize a symmetry property that a solution to this problem ought to possess. The best translational offset is the difference between the centroid of the coordinates in one system and the rotated and scaled centroid of the coordinates in the other system. The best scale is equal to the ratio of the root-mean-square deviations of the coordinates in the two systems from their respective centroids. These exact results are to be preferred to approximate methods based on measurements of a few selected points. The unit quaternion representing the best rotation is the eigenvector associated with the most positive eigenvalue of a symmetric 4 × 4 matrix. The elements of this matrix are combinations of sums of products of corresponding coordinates of the points.

© 1987 Optical Society of America

Full Article  |  PDF Article
More Like This
Closed-form solution of absolute orientation using orthonormal matrices

Berthold K. P. Horn, Hugh M. Hilden, and Shahriar Negahdaripour
J. Opt. Soc. Am. A 5(7) 1127-1135 (1988)

Relative orientation revisited

Berthold K. P. Horn
J. Opt. Soc. Am. A 8(10) 1630-1638 (1991)

Quaternion algebra for Stokes–Mueller formalism

Ertan Kuntman, Mehmet Ali Kuntman, Adolf Canillas, and Oriol Arteaga
J. Opt. Soc. Am. A 36(4) 492-497 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (169)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel