Abstract
We present both experimental measurements and Monte-Carlo-based simulations of the diffusely backscattered intensity patterns that arise from illuminating a turbid medium with a polarized laser beam. It is rigorously shown that, because of axial symmetry of the system, only seven elements of the effective backscattering Mueller matrix are independent. A new numerical method that allows simultaneous calculation of all 16 elements of the two-dimensional Mueller matrix is used. To validate our method we compared calculations to measurements from a turbid medium that consisted of polystyrene spheres of different sizes and concentrations in deionized water. The experimental and numerical results are in excellent agreement.
© 1999 Optical Society of America
Full Article | PDF ArticleMore Like This
Brent D. Cameron, M. J. Raković, Mehrübe Mehrübeoǧlu, George W. Kattawar, Sohi Rastegar, Lihong V. Wang, and Gerard L. Coté
Opt. Lett. 23(7) 485-487 (1998)
Yong Deng, Shaoqun Zeng, Qiang Lu, Dan zhu, and Qingming Luo
Opt. Express 15(15) 9672-9680 (2007)
Sebastian Bartel and Andreas H. Hielscher
Appl. Opt. 39(10) 1580-1588 (2000)