计算机科学 ›› 2019, Vol. 46 ›› Issue (8): 201-205.doi: 10.11896/j.issn.1002-137X.2019.08.033
李兰, 杨晨, 王安福
LI Lan, YANG Chen, WANG An-fu
摘要: 差分隐私与传统的隐私保护方法不同,差分隐私可以对隐私保护强度进行量化分析,正是由于这一特点,使得差分隐私在数据发布、数据挖掘等方面得到了广泛的研究和应用。隐私预算因子ε是影响隐私保护强度的重要因素之一,如何选取一个合理的ε值,使数据的可用性达到最大化,并能够定量分析出隐私保护强度是亟待解决的一个问题。因此,通过分析满足Laplace分布噪音的概率密度函数与分布函数之间的关系,得到在噪音选取时,噪音可能落在的3种区间,从而建立隐私参数ε与落点概率之间的数学关系表达式,并利用函数图像模型对参数ε的选取计算式进行定量分析,最后结合攻击概率对隐私参数ε的取值上界进行了探讨。
中图分类号:
[1]DALENIUS T.Towards a methodology for statistical disclosure control[J].Statistik Tidskrift,1977,15(2):429-444. [2]DWORK C.Differential privacy[C]∥Proceedings of the 33rd International Colloquium on Automata,Languages and Programming.Berlin:Springer,2006:1-12. [3]DWORK C.Differential privacy:A survey of results[C]∥Proceedings of the 5th International Conference on Theory and Applications of Models of Computation.Berlin:Springer-Verlag,2008:1-19. [4]DWORK C.Differential privacy and robust statistics[C]∥Proceedings of the 41st Annual ACM Symposium on Theory of Computing.New York:ACM Press,2009:371-380. [5]DWORK C,NARO M,REINGOLD O,et al.On the complexity of differentially private data release:efficient algorithms and hardness results[C]∥Proceedings of the 41st Annual ACM Symposium on Theory of Computing.New York:ACM Press,2009:381-390. [6]DWORK C.The differential privacy frontier[C]∥Proceedings of the 6th Theory of Cryptography Conference on Theory of Cryptography.Berlin:Springer,2009:496-502. [7]SWEENEY L.k-anonymity:a model for protecting privacy[J].International Journal on Uncertainty,Fuzziness and Knowledge-based Systems,2002,10(5):557-570. [8]MACHANAVAJJHALA A,GEHRKE J,KIFER D.l-diversity:privacy beyond k-anonymity [J].ACMTransactions on Know-ledge Discovery from Data,2007,1(1):24-35. [9]LI N,LI T,VENKATASUBRAMANIAN S.t-closeness:privacy beyond k-anonymity and l-diversity[C]∥Proceedings of the IEEE International Conference on Data Engineering.Washington DC:IEEE Computer Society,2007:106-115. [10]WONG C W,LI J,FU W C,et al.(α-k)-anonymity:An enhanced k-anonymity model for privacy preserving data publishing[C]∥Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2006:754-759. [11]XIAO X,TAO Y.m-invariance:towards privacy preserving re-publication of dynamic datasets[C]∥Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data.New York:ACM Press,2007:689-700. [12]吴英杰.隐私保护数据:发布模型与算法[M].北京:清华大学出版社,2015. [13]DWORK C,SMITH A.Differential privacy for statistics:What we know and what we want to learn [J].Journal of Privacy and Confidentiality,2010,1(2):135-154. [14]XIONG P,ZHU T Q,WANG X F.A Survey on Differential Privacy and Applications[J].Chinese Journal of Computers,2014,37(1):101-102.(in Chinese) 熊平,朱天清,王晓峰.差分隐私保护及其应用[J].计算机学报,2014,37(1):101-102. [15]ZHANG X J,MENG X F.Differential privacy in data publication and analysis[J].Chinese Journal of Computers,2014,37(4):927-949.(in Chinese) 张啸剑,孟小峰.面向数据发布和分析的差分隐私保护[J].计算机学报,2014,37(4):927-949. [16]XIAO X,WANG G,GEHRKE J.Differential privacy via wavelet transforms[J].IEEE Transon Knowledge and Data Engineering,2012,23(8):1200-1214. [17]ZHANG X J,WANG M,MENG X F.An accurate method for mining top-k frequent pattern under differential privacy[J].Journal of Computer Research and Development,2014,51(1):104-114.(in Chinese) 张啸剑,王淼,孟小峰.差分隐私保护下一种精确挖掘top-k频繁模式方法[J].计算机研究与发展,2014,51(1):104-114. [18]LI N,QARDAJI W,SU D.Provably Private Data Anonymization:Or, k-anonymity meets differential privacy,CERIAS TR2010-24 [R].West Lafayette:Center for Education and Research Information Assurance and Security,Purdue University,2010. [19]McSHERRY F.Privacy integrated queries:An extensible platform for privacy-preserving data analysis [C]∥Proceedings of the 2009 ACM SIGMOD International Conference on Management of data.New York:ACM Press,2009:19-30. [20]LEE J,CLIFTON C.How much is enough? Choosing ε for differential privacy[C]∥Proceeding of the 14th International Conference on Information Security.Berlin:Springer,2011:325-340. [21]HE X M,WANG X Y,CHEN H H,et al.Study on choosing the parameter ε in differential privacy[J].Journal on Communications,2015,36(12):124-130.(in Chinese) 何贤芒,王晓阳,陈华辉,等.差分隐私保护参数ε的选取研究[J].通信学报,2015,36(12):124-130. [22]OUYANG J,XIAO Z H,LIU S P,et al.Heuristic privacy parameter setting strategy for differential privacy model[J/OL].Application Research of Computers.http://www.arocmag.com/ article/02-2019-01-037.html.(in Chinese) 欧阳佳,肖政宏,刘少鹏,等.差分隐私模型的启发式隐私参数设置策略[J/OL].计算机应用研究.http://www.arocmag.com/ article/02-2019-01-037.html. [23]EVFIMIEVSKI A,GEHRKE J,SRIKANT R.Limiting privacy breaches in privacy preserving data mining [C]∥Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems.New York:ACM Press,2003:211-222. [24]HSU J,GABOARDI M,et al.Differential Privacy:An Economic Method for Choosing Epsilon[C]∥Proceedings of the IEEE 27th Computer Security Foundations Symposium.2014:398-410. [25]NALDI M,ACQUISTO D G.Differential Privacy:An Estimation Theory-Based Method for Choosing Epsilon[J].arXiv:1510.00917. [26]HAEVERLEN A,PIERCE B C,NARAYA A.Differential privacy under fire [C]∥Proceedings of the 20th USENIXConfe-rence on Security.2011:33-39. [27]DWORK C,McSHERRY F,NISSIM K,et al.Calibrating Noise to Sensitivity in Private Data Analysis[C]∥Proceedings of the 3rd Conference on Theory of Cryptography.Berlin:Springer,2006:265-268. |
[1] | 鲁晨阳, 邓苏, 马武彬, 吴亚辉, 周浩浩. 基于分层抽样优化的面向异构客户端的联邦学习 Federated Learning Based on Stratified Sampling Optimization for Heterogeneous Clients 计算机科学, 2022, 49(9): 183-193. https://doi.org/10.11896/jsjkx.220500263 |
[2] | 汤凌韬, 王迪, 张鲁飞, 刘盛云. 基于安全多方计算和差分隐私的联邦学习方案 Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy 计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108 |
[3] | 吕由, 吴文渊. 隐私保护线性回归方案与应用 Privacy-preserving Linear Regression Scheme and Its Application 计算机科学, 2022, 49(9): 318-325. https://doi.org/10.11896/jsjkx.220300190 |
[4] | 黄觉, 周春来. 基于本地化差分隐私的频率特征提取 Frequency Feature Extraction Based on Localized Differential Privacy 计算机科学, 2022, 49(7): 350-356. https://doi.org/10.11896/jsjkx.210900229 |
[5] | 王健. 基于隐私保护的反向传播神经网络学习算法 Back-propagation Neural Network Learning Algorithm Based on Privacy Preserving 计算机科学, 2022, 49(6A): 575-580. https://doi.org/10.11896/jsjkx.211100155 |
[6] | 李利, 何欣, 韩志杰. 群智感知的隐私保护研究综述 Review of Privacy-preserving Mechanisms in Crowdsensing 计算机科学, 2022, 49(5): 303-310. https://doi.org/10.11896/jsjkx.210400077 |
[7] | 王美珊, 姚兰, 高福祥, 徐军灿. 面向医疗集值数据的差分隐私保护技术研究 Study on Differential Privacy Protection for Medical Set-Valued Data 计算机科学, 2022, 49(4): 362-368. https://doi.org/10.11896/jsjkx.210300032 |
[8] | 吕由, 吴文渊. 基于同态加密的线性系统求解方案 Linear System Solving Scheme Based on Homomorphic Encryption 计算机科学, 2022, 49(3): 338-345. https://doi.org/10.11896/jsjkx.201200124 |
[9] | 孔钰婷, 谭富祥, 赵鑫, 张正航, 白璐, 钱育蓉. 基于差分隐私的K-means算法优化研究综述 Review of K-means Algorithm Optimization Based on Differential Privacy 计算机科学, 2022, 49(2): 162-173. https://doi.org/10.11896/jsjkx.201200008 |
[10] | 金华, 朱靖宇, 王昌达. 视频隐私保护技术综述 Review on Video Privacy Protection 计算机科学, 2022, 49(1): 306-313. https://doi.org/10.11896/jsjkx.201200047 |
[11] | 雷羽潇, 段玉聪. 面向跨模态隐私保护的AI治理法律技术化框架 AI Governance Oriented Legal to Technology Bridging Framework for Cross-modal Privacy Protection 计算机科学, 2021, 48(9): 9-20. https://doi.org/10.11896/jsjkx.201000011 |
[12] | 董晓梅, 王蕊, 邹欣开. 面向推荐应用的差分隐私方案综述 Survey on Privacy Protection Solutions for Recommended Applications 计算机科学, 2021, 48(9): 21-35. https://doi.org/10.11896/jsjkx.201100083 |
[13] | 孙林, 平国楼, 叶晓俊. 基于本地化差分隐私的键值数据关联分析 Correlation Analysis for Key-Value Data with Local Differential Privacy 计算机科学, 2021, 48(8): 278-283. https://doi.org/10.11896/jsjkx.201200122 |
[14] | 张学军, 杨昊英, 李桢, 何福存, 盖继扬, 鲍俊达. 融合语义位置的差分私有位置隐私保护方法 Differentially Private Location Privacy-preserving Scheme withSemantic Location 计算机科学, 2021, 48(8): 300-308. https://doi.org/10.11896/jsjkx.200900198 |
[15] | 陈天荣, 凌捷. 基于特征映射的差分隐私保护机器学习方法 Differential Privacy Protection Machine Learning Method Based on Features Mapping 计算机科学, 2021, 48(7): 33-39. https://doi.org/10.11896/jsjkx.201200224 |
|