计算机科学 ›› 2019, Vol. 46 ›› Issue (6): 148-152.doi: 10.11896/j.issn.1002-137X.2019.06.022
张洁卉1, 潘超2, 章勇1
ZHANG Jie-hui1, PAN Chao2, ZHANG Yong1
摘要: 网络系统风险受众多因素影响,具有较强的时变性和非线性变化的特点,导致单一模型无法全面描述网络系统风险变化的特点。传统组合模型根据网络系统风险评价确定模型的权值,无法准确描述每一个模型对网络系统风险最终评价结果的贡献,使得网络系统风险评价的准确性差。为了改善网络系统风险评价的效果,文中设计了最优化权值的网络系统风险组合评价模型。首先利用不同模型从不同角度对网络系统风险进行评价,以得到单一模型的预测结果;然后将单一模型的网络系统风险评价结果作为证据体,根据改进证据理论对证据体进行融合,得到网络系统风险的最终评价;最后将提出的方法与其他网络系统风险评价进行了对比测试。测试结果表明,所提模型可以准确地对网络系统风险进行评价,能够反映网络系统风险的变化特点,获得更加理想的网络系统风险评价结果,且评价精度要明显优于其他网络系统风险评价模型。
中图分类号:
[1]YUAN X,FENG Z Y,XU W J,et al.Secure connectivity analysis in unmanned aerial vehicle networks [J].Frontiers of Information Technology & Electronic Engineering,2018,19(3):409-422. [2]MOVAHEDI Z,HOSSEINI Z,BAYAN F,et al.Trust-distor-tion resistant trust management frameworks on mobile ad hoc networks:a survey[J].IEEE Communications Surveys & Tutorials,2016,18(2):1287-1309. [3]HAN G J,JIANG J F,SHU L,et al.An attack-resistant trust model based on multi-dimensional trust metrics in underwater acoustic sensor network[J].IEEE Tansactions Mob Computer,2017,14(12):2447-2459. [4]LIU Q,CAI Z P,YIN J P,et al.Frameworks and methods of cybersecurity detection[J].Computer Engineering & Science,2017,39(12):2224-2229.(in Chinese) 刘强,蔡志平,殷建平,等.网络安全检测框架与方法研究[J].计算机工程与科学,2017,39(12):2224-2229. [5]HUANG Q L,MA Z F,YANG Y X,et al.Improving Security and Efficiency for Encrypted Data Sharing in Online Social Networks[J].Information Security,2018,28(7):104-114. [6]FU Y,YU Y H,CHEN Y Q,et al.Network Security Analysis on Attack-defense Behavior Tree[J].Journal of Sichuan University (Engineering Science Edition),2017,49(2):115-120.(in Chinese) 付钰,俞艺涵,陈永强,等.基于攻防行为树的网络安全态势分析[J].工程科学与技术,2017,49(2):115-120. [7]HU H,YE R G,ZHANG H Q,et al.Quantitative method for network security situation based on attack prediction [J].Journal on Communications,2017,38(10):122-134.(in Chinese) 胡浩,叶润国,张红旗,等.基于攻击预测的网络安全态势量化方法[J].通信学报,2017,38(10):122-134. [8]CHEN Y L,TANG G M,SUN Y F.Assessment of Network Se-curity Situation Based on Immune Danger Theory[J].Computer Science,2015,42(6):167-170.(in Chinese) 陈妍伶,汤光明,孙怡峰.基于免疫危险理论的网络安全态势评估[J].计算机科学,2015,42(6):167-170. [9]LIU J W,LIU J J,LU Y L,et al.Application of game theory in network security situation awareness [J].Journal of Computer Applications,2017,37(S2):48-51,64.(in Chinese) 刘景玮,刘京菊,陆余良,等.博弈论在网络安全态势感知中的应用[J].计算机应用,2017,37(S2):48-51,64. [10]WEN Z C,CHEN Z G,TANG J.Network Security Assessment Method Based on Cluster Analysis [J].Journal of Shanghai Jiaotong University,2016,50(9):1407-1414,1421.(in Chinese) 文志诚,陈志刚,唐军.基于聚类分析的网络安全态势评估方法[J].上海交通大学学报,2016,50(9):1407-1414,1421. [11]MALEKI H,VALIZADEH M H,KOCH W,et al.Markov modeling of moving target defense games [C]∥Proceedings of the 2016 ACM Workshop on Moving Target Defense.ACM,2016:81-91. [12]GE H H,XIAO D,CHEN T P,et al.Quantitative Evaluation Approach for Real-time Risk Based on Attack Event Correlating [J].Journal of Electronics & Information Technology,2013,35(11):2630-2636.(in Chinese) 葛海慧,肖达,陈天平,等.基于动态关联分析的网络安全风险评估方法[J].电子与信息学报,2013,35(11):2630-2636. [13]HUANG J M,ZHANG H W,WANG J D,et al.Defense strategies selection based on attack defense evolutionary game model[J].Information Science,2017,38(1):168-176.(in Chinese) 黄健明,张恒巍,王晋东,等.基于攻防演化博弈模型的防御策略选取方法[J].通信学报,2017,38(1):168-176. [14]WEN Z C,CHEN Z G,TANG J.Assessing network security situation quantitatively based on information fusion[J].Journal of Beijing University of Aeronautics and Astronautics,2016,42(8):1593-1602.(in Chinese) 文志诚,陈志刚,唐军.基于信息融合的网络安全态势量化评估方法[J].北京航空航天大学学报,2016,42(8):1593-1602. [15]HUANG J M,ZHANG H W.A Method for Selecting Defense Strategies Based on Stochastic Evolutionary Game Model[J].Acta Electronica Sinica,2018,46(9):2222-2228.(in Chinese) 黄健明,张恒巍.基于随机演化博弈模型的网络防御策略选取方法[J].电子学报,2018,46(9):2222-2228. [16]WHITE J,PARK J S,KAMHOUA C A,et al.Game theoretic attack analysis in online social network services [C]∥Proceedings of the 2017 International Conference on Social Networks Technology.IEEE,2017:1012-1019. [17]LIPPMANN R,HAINES J W.Analysis and results of the DARPA off-line intrusion detection evaluation [C]∥Proceedings of the 17th International Workshop on Recent Advances in Intrusion Detection.New York:ACM,2016:162-182. [18]WU G,CHEN L,SI Z G,et al.An index optimization model for network security situation evaluation [J].Computer Enginee-ring & Science,2017,39(5):861-869.(in Chinese) 吴果,陈雷,司志刚,等.网络安全态势评估指标体系优化模型研究[J].计算机工程与科学,2017,39(5):861-869. [19]CHENG J T,AI L,DUAN Z M.Transformer fault diagnosis based on improved evidence theory and neural network integra-ted method [J].Power System Protection and Control,2013,41(14):92-96.(in Chinese) 程加堂,艾莉,段志梅.改进证据理论与神经网络集成的变压器故障诊断[J].电力系统保护与控制,2013,41(14):92-96. LI F W,ZHENG B,ZHU J,et al.A method of network security situation prediction based on AC-RBF neural network.Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2014,26(5):576-581.(in Chinese) 李方伟,郑波,朱江,等.一种基于AC-RBF神经网络的网络安全态势预测方法.重庆邮电大学学报(自然科学版),2014,26(5):576-581. |
[1] | 周芳泉, 成卫青. 基于全局增强图神经网络的序列推荐 Sequence Recommendation Based on Global Enhanced Graph Neural Network 计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085 |
[2] | 周乐员, 张剑华, 袁甜甜, 陈胜勇. 多层注意力机制融合的序列到序列中国连续手语识别和翻译 Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion 计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026 |
[3] | 宁晗阳, 马苗, 杨波, 刘士昌. 密码学智能化研究进展与分析 Research Progress and Analysis on Intelligent Cryptology 计算机科学, 2022, 49(9): 288-296. https://doi.org/10.11896/jsjkx.220300053 |
[4] | 柳杰灵, 凌晓波, 张蕾, 王博, 王之梁, 李子木, 张辉, 杨家海, 吴程楠. 基于战术关联的网络安全风险评估框架 Network Security Risk Assessment Framework Based on Tactical Correlation 计算机科学, 2022, 49(9): 306-311. https://doi.org/10.11896/jsjkx.210600171 |
[5] | 王磊, 李晓宇. 基于随机洋葱路由的LBS移动隐私保护方案 LBS Mobile Privacy Protection Scheme Based on Random Onion Routing 计算机科学, 2022, 49(9): 347-354. https://doi.org/10.11896/jsjkx.210800077 |
[6] | 王润安, 邹兆年. 基于物理操作级模型的查询执行时间预测方法 Query Performance Prediction Based on Physical Operation-level Models 计算机科学, 2022, 49(8): 49-55. https://doi.org/10.11896/jsjkx.210700074 |
[7] | 陈泳全, 姜瑛. 基于卷积神经网络的APP用户行为分析方法 Analysis Method of APP User Behavior Based on Convolutional Neural Network 计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121 |
[8] | 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥. 基于注意力机制的医学影像深度哈希检索算法 Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism 计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153 |
[9] | 檀莹莹, 王俊丽, 张超波. 基于图卷积神经网络的文本分类方法研究综述 Review of Text Classification Methods Based on Graph Convolutional Network 计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064 |
[10] | 闫佳丹, 贾彩燕. 基于双图神经网络信息融合的文本分类方法 Text Classification Method Based on Information Fusion of Dual-graph Neural Network 计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042 |
[11] | 李宗民, 张玉鹏, 刘玉杰, 李华. 基于可变形图卷积的点云表征学习 Deformable Graph Convolutional Networks Based Point Cloud Representation Learning 计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023 |
[12] | 郝志荣, 陈龙, 黄嘉成. 面向文本分类的类别区分式通用对抗攻击方法 Class Discriminative Universal Adversarial Attack for Text Classification 计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077 |
[13] | 齐秀秀, 王佳昊, 李文雄, 周帆. 基于概率元学习的矩阵补全预测融合算法 Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning 计算机科学, 2022, 49(7): 18-24. https://doi.org/10.11896/jsjkx.210600126 |
[14] | 杨炳新, 郭艳蓉, 郝世杰, 洪日昌. 基于数据增广和模型集成策略的图神经网络在抑郁症识别上的应用 Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition 计算机科学, 2022, 49(7): 57-63. https://doi.org/10.11896/jsjkx.210800070 |
[15] | 张颖涛, 张杰, 张睿, 张文强. 全局信息引导的真实图像风格迁移 Photorealistic Style Transfer Guided by Global Information 计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036 |
|