计算机科学 ›› 2017, Vol. 44 ›› Issue (Z11): 547-551.doi: 10.11896/j.issn.1002-137X.2017.11A.116

• 综合、交叉与应用 • 上一篇    下一篇

基于种群多样性的FPSO算法在空中加油区域配置中的应用

何旭,景小宁,冯超,程越   

  1. 空军工程大学航空航天工程学院 西安710038,空军工程大学航空航天工程学院 西安710038,空军工程大学航空航天工程学院 西安710038,空军工程大学航空航天工程学院 西安710038
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受航空科学基金(20155196022),国家自然科学基金青年基金(71501184)资助

Diversity-guided FPSO Algorithm for Solving Air Refueling Region Deplaying Problem

HE Xu, JING Xiao-ning, FENG Chao and CHENG Yue   

  • Online:2018-12-01 Published:2018-12-01

摘要: 空中加油区域配置是完成空中加油任务的关键环节。针对运输机的空中加油点选取问题,考虑总耗油量和运输时间要求,引入威胁代价,建立数学模型。设置加油区域配置参数,并使用基于种群多样性的模糊粒子群优化(Diversity-guided Fuzzy Particle Swarm Optimization,DG-FPSO)算法对其进行仿真实验,验证了算法的优越性,并得到了最优加油点。

关键词: 运输机,空中加油,FPSO算法,种群多样性

Abstract: Region deploying plays an important role in air refueling tasks.To select transport aircraft’s air refueling point,the model was established on the basis of requirements for total oil consumption,transportation time and threat price.The FPSO algorithm was used in the simulation and the superiority was verified,and we got the best air refueling point.

Key words: Transport aircraft,Air refueling,FPSO algorithm,Population diversity

[1] 陆宇平,杨朝星,刘洋洋.空中加油系统的建模与控制技术综述[J].航空学报,2014,5(9):2375-2389.
[2] BARANS J W,WILEY V D,MOORE JT,et al.Solving the Aerial Fleet Refueling Problem using Group Theoretic Tabu Search[J].Mathematical and Computer Modeling,2004,9(6-8):617-640.
[3] PFLIEGER C H.Models for the optimization of air refueling mission[R].Ohio,USA:Air Force Institute of Technology,AD-A 262392,1993.
[4] BUSH B A.Analysis of Fuel Consumption for an Aircraft Deployment[R].North Carolina:North Carolina State University,2006:12-45.
[5] ANNABALLI R J.A Multiple Ant Colony Optimization Metahuristic for the Air Refueling Tanker Assignment Problem[R].Ohio:Air Force Institute of Technology Graduate School of Engineering and Management,2002:6-23.
[6] BEARD R W,MCLAIN T W.Coordinated Target Assignment and Intercept for Unmanned Air Vehicles[J].IEEE Trans.on Robotics and Automation(S1042-2962),2002,8(6):911-922.
[7] 徐亚涛,原溱.一种特定情形下的空中加油模型设计[J].系统仿真学报,2011,3(1):340-342.
[8] 刘健豪,艾剑良.飞机空中加油航路规划的最优化研究[J].复旦学报(自然科学版),2014,3(1):141-146.
[9] 俞桦,艾剑良.基于遗传算法的空中加油航路规划[J].系统管理学报,2009,8(3):350-354.
[10] 秦前付,赵景龙,徐洸.空中加油计划优化模型及其遗传算法求解[J].计算机工程与应用,2007,3(35):219-221.
[11] 计秀敏.空中加油机的发展及其作战使用[M].北京:航空工业出版社,2004:71-76
[12] 胡春鹤,陈宗基.多无人机空中加油的最优会合航路规划[J].控制理论与应用,2015,2(10):1400-1406.
[13] 董新民,徐跃鉴,陈博.自动空中加油技术研究进展与关键问题[J].空军工程大学学报(自然科学版),2008,9(6):1-5.
[14] 程路尧,朱建冲,蔡纪伟.无人作战飞机空中加油航路问题研究[J].航空兵器,2008(5):12-15.
[15] 刘娇龙,薛建平,董新民,等.空中加油变质量飞机建模与仿真[J].科学技术与工程,2013,3(30):8971-8975.
[16] 李艺辉,韩旭东.基于遗传算法的战场空中加油空域规划[J].计算机仿真,2016,3(8):58-62.
[17] ROSKAM J.Airplane flight dynamics and automatic flight con-trols.http://pdf114.yobabooks.com/book/978-1884885181.
[18] SHI Y,EBERHART R C.Fuzzy adaptive particle swarm optimization[C]∥Proc IEEE Int Conf on Evolutionay Computation.Seoul,Korea,2001:101-106.
[19] 罗强,李瑞浴,易东云.基于模糊文化算法的自适应粒子群优化[J].计算机工程与科学,2008,0(1):88-92.
[20] URSEM R K.Diversity-guided evolutionary algorithm[C]∥The 7th Int’l Conf on Parallel Problem Solving from Nature,LNCS2439.Berlin:Springer,2002:462-474.
[21] 邵鹏,吴志健.基于改进PSO算法的Rosenbrock函数优化问题的研究[J].计算机科学,2013,0(9):194-197.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!