计算机科学 ›› 2016, Vol. 43 ›› Issue (10): 229-233.doi: 10.11896/j.issn.1002-137X.2016.10.044

• 人工智能 • 上一篇    下一篇

基于智能分组策略的XML关键字查询算法

张永,李泉霖,刘博   

  1. 辽宁师范大学计算机与信息技术学院 大连116081;计算机软件新技术国家重点实验室南京大学 南京210023,辽宁师范大学计算机与信息技术学院 大连116081,辽宁师范大学计算机与信息技术学院 大连116081
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金面上项目(61373127),辽宁省教育厅基金项目(L2011186)资助

XML Keyword Search Algorithm Based on Intelligent Grouping Strategy

ZHANG Yong, LI Quan-lin and LIU Bo   

  • Online:2018-12-01 Published:2018-12-01

摘要: XML关键字查询作为一种信息检索方式,一直是相关领域的热点研究问题。在经典查询语义SLCA的基础上,设计并实现了一种基于智能分组策略的XML关键字查询的优化算法。提出的算法通过合理的分组策略可以保证在运算过程中及时 去除组内祖先节点和重复节点,减少了大量冗余计算,提高了算法的效率。最后设计多组实验在不同的XML数据上进行测试,实验结果表明了该算法的有效性和高效性。

关键词: 扩展标记语言,关键字查询,智能分组,SLCA

Abstract: As an information retrieval method,the XML keyword search has been a hot issue in the related fields.On the base of the classical query semantic SLCA,an XML keyword search algorithm based on intelligent grouping strategy was designed and realized in this paper.With reasonable grouping strategy,the proposed algorithm can ensure that the ancestor nodes and repeat nodes are removed in time in the operation process,reducing the redundancy calculation and improving the efficiency of the algorithm.Finally,experiments on different XML data were designed.The results show the effectiveness and efficiency of the proposed algorithm.

Key words: Extensible markup language,Keyword search,Intelligent grouping,SLCA

[1] Xu Y,Papakonstantinou Y.Efficient keyword search for smallest LCAs in XML databases[C]∥Proceedings of SIGMOD.2005:537-538
[2] Sun C,Chan C Y,Goenka A K.Multiway SLCA-based keyword search in XML data[C]∥Proceedings of the 16th International Conference on World Wide Web.2007:1043-1052
[3] Kong L B,Tang S W,Yang D Q,et al.Layered Solution for SLCA Problem in XML Information Retrieval[J].Journal of Software,2007,18(4):919-932(in Chinese) 孔令波,唐世渭,杨冬青,等.XML信息检索中最小子树根节点问题的分层算法[J].软件学报,2007,18(4):919-932
[4] Li G L,Feng J H,Wang J Y,et al.Effective keyword search for valuable LCAs over XML documents[C]∥Proceedings of the sixteenth ACM Conference on Information and Knowledge Mana-gement.ACM Press,2007:31-40
[5] Liu Z,Chen Y.Identifying meaning return information for XML keyword search[C]∥Proceedings of SIGMOD.2007:329-340
[6] Xu Y,Papakonstantinou Y.Efficient LCA based keyword search in XML data[C]∥Proceedings of EDBT.2008:35-546
[7] Zhang C,Ma Q,Wang X,et al.Distributed SLCA-based XML keyword search by Map-Reduce[M]∥Database Systems for Advanced Applications.Springer Berlin Heidelberg,2010:386-397
[8] Bao Z,Lu J,Ling T W,et al.Towards an effective XML keyword search[J].IEEE Transactions on Knowledge and Data Engineering,2010,22(8):1077-1092
[9] Chen L J,Papakonstantinou Y.Supporting top-k keyword searchin xml databases[C]∥IEEE 26th International Conference on Data Engineering (ICDE).2010:689-700
[10] Zhou J,Bao Z,Wang W,et al.Fast SLCA and ELCA computation for XML keyword queries based on set intersection [C]∥IEEE 28th International Conference on Data Engineering (ICDE).2012:905-916
[11] Li J,Liu C,Zhou R,et al.Quasi-SLCA based keyword query processing over probabilistic XML data[J].IEEE Transactions on Knowledge and Data Engineering,2014,26(4):957-969
[12] Aksoy C,Dimitriou A,Theodoratos D,et al.XReason:A semantic approach that reasons with patterns to answer XML keyword queries[M]∥Database Systems for Advanced Applications.Springer Berlin Heidelberg,2013:299-314
[13] Zhao Y,Yuan Y,Wang G.Keyword search over probabilistic XML documents based on node classification[J].Mathematical Problems in Engineering,2015:135-144
[14] Bttcher S,Hartel R,Rabe J.Efficient XML keyword search based on DAG-compression[M]∥Database and Expert Systems Applications.Springer International Publishing,2014:122-137
[15] Lin R R,Chang Y H,Chao K M.Locating Valid SLCAs forXML keyword search with NOT semantics[J].ACM SIGMOD Record,2014,43(2):29-34
[16] Dimitriou A,Theodoratos D,Sellis T.Top-k-size keywordsearch on tree structured data[J].Information Systems,2015,47:178-193

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!